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Supplementary Material

1. Overview
This supplementary material contains this pdf explaining
details not covered by the main paper, a video explanation
and a html file for 200 qualitative results.

Sec. 2 discusses our equation details with softened oper-
ations. Sec. 3 discusses all the details relevant to differen-
tiability of Dr.Bokeh, including all the derivatives (Sec. 3.1)
and more details of depth from defocus using Dr.Bokeh
(Sec. 3.2). Sec. 4 talks about how we setup our synthetic
benchmark (Sec. 4.1), discussion of the each method de-
fects (Sec. 4.2), more comparison results (Sec. 4.3) and
more results of the differentiability of our method (Sec. 4.4).

2. Softened Dr.Bokeh Equation
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Figure 1. Softening of the two non-differentiable operations:
Softening of the non-differentiable step function (left). Note we
shift the soft-step function to the right to make sure that for x = 0,
y is close to zero. The right image shows softening of the non-
differentiable delta function.

The occlusion-aware bokeh rendering equation in main pa-
per Eqn. 2 includes two non-differentiable terms: the oc-
clusion term O and the scattering term Sl. These terms
are non-differentiable as it involves non-differentiable op-
erations similar to step function or Dirac delta function as
shown in Fig. 1. We approximate those non-differentiable
terms with differentiable operations, e.g., a step function
can be approximated with a soft-step function. The occlu-
sion term O is the Dirac delta function δx with a value in-
finity at zero and zero everywhere else. We replace the Ol

by:

Ol(y, x) = 1−exp(−3d2x)

(
1

2
tanh(10(dy − dx − 0.1))− 1

2

)
.

(1)
The scattering term Sl is a step function(if the neighbor-

hood x + ∆x can scatter to x then is one, otherwise zero)
we replace it by a differentiable function:

Sl(y, x) =
1

(1 + 10 exp (−3(α|dy|+ 1− ∥dy − dx∥22)))
, (2)

where α is a camera parameter controlling the blur radius.
The coefficients in Eqns. (1, 2) are empirically selected to

fit the original function and are reasonable to the bokeh ren-
dering process.

3. Differentiable Dr.Bokeh

3.1. All Derivatives

The partial derivative for d is:
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The partial derivative for a is:
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, (4)

where the W (y) is:

W (y) =
∑

y′∈Ω(y)

w(y′, y)O(y′, y). (5)

The full equation of ∂w(x,y)
∂d(x) is as follows:

∂w(x, y)

∂d(x)
=

A(x, y)K(x)a(x)
∂S(x,y)
∂d(x)

− S(x, y)K(x)a(x)
∂A(x)
∂d

A(x, y)2

(6)

where ∂S(x,y)
∂d(x) and ∂S(x,y)

∂d(x) are the following in practice:

∂S(x, y)

∂d(x)
=

0.3e3(−(d(x)−d(y)))

(e3(−(d(x)−d(y))) + 0.1)2
(7)

∂O(x, y)

∂d(x)
= e−3d(x)2 −20

(10(d(y)− d(x)− 0.1))2
+

(−0.5−tanh(10(d(y)−d(x)−0.1)))(−e−3d(x)2 (−6|d(x)|sign(y)))
(8)

∂w(x, y)

∂a(x)
=

S(y, x)K(y)

A(y)
(9)

As mentioned in the paper, directly deriving and imple-
menting the backward computation of Dr.Bokeh is compli-
cated so we will release our code.
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Figure 2. Per-pixel loss is not enough: In the left image, neigh-
borhood pixels jointly contribute to x. There exists a case that the
x is correct, i.e. the sum of the contributions is correct, but all the
neighborhood values are totally wrong, e.g., neighborhood values
are shuffled. In this case, there is no loss for pixel x. Then there is
no backward gradient for the neighborhood pixels as shown in the
right image, even though the neighborhood pixels are wrong.

3.2. Depth from Defocus

We follow existing works [3, 7], the gradient loss in main
paper Eqn. 7:

G =
1

N

N∑
i=1

|∂xDi|e−|∂xIi| + |∂yDi|e−|∂yIi|, (10)

where N is the N layers of the pyramid of the image, and
G is a smooth and regularization term in monocular-depth
estimation. In practice, we set N = 4.

Except for the gradient loss, we noticed that per-pixel
loss, such as L1 or L2 norm cannot supervise the neu-
ral network efficiently due to the ambiguity introduced by
the bokeh computation process. As the example shown in
Fig. 2, the per-pixel loss fails to supervise the network to
optimize the neighborhood values. The reason is that pixel
scattering or gathering is a patch-level operation, which
means that the per-pixel loss signal is not enough in describ-
ing the patch-level error. To guide the network not only care
about per-pixel results but also regional results, we propose
adding a hierarchy SSIM term to learn a better depth. The
default SSIM has a patch size of 11. As the maximum scat-
tering range is highly likely to be larger than 11, we propose
to use a hierarchy SSIM loss: a set of SSIM loss with dif-
ferent patch sizes to give the pixel the regional feedback
instead of per-pixel feedback.

4. Evaluation

4.1. Bokeh Rendering Evaluation
Existing works [6, 8] setup the scene by compositing mul-
tiple layered images and utilizing an approximated pseudo
ray tracer to render the lens blur ground truth. Instead, we
implemented a renderer that ray traces through a real thin

lens to generate the lens blur ground truth in order to evalu-
ate the effectiveness of Dr.Bokeh (see main paper Fig. 6).
The lens is modeled as the intersection of two identical
spheres of radius Rc, such that the radius of the intersec-
tion circle is the aperture radius Ra = L/2. The thickness
of the lens is computed as d = 2

√
R2

c −R2
a, which gives

the lens’ focal length f together with the lens’ refractive
index η, using the lensmaker’s equation [2]:

1

f
= (η − 1)

(
2

Rc
+

(η − 1)d

ηR2
c

)
.

The camera is set forth with a chosen FOV, and the image
plane is placed at distance DI > f . The color of a pixel
is computed by tracing rays from the pixel through various
random points on the lens. More details can be found in the
appendix.

The scene (5-layer billboards) setup is similar to the
dataset by DeepLens [8] and MPIB [6]. The fore-
ground objects are randomly sampled from Adobe Mat-
ting Dataset [10] and AIM-500 [4]. The background scenes
are randomly sampled from the landmark dataset [9]. The
benchmark includes 100 scenes with different blur radiuses
and focal planes. Each scene has an all-in-focus image, a
ground truth depth, a layered ground truth scene represen-
tation, and a bokeh ground truth.

4.2. More Comparisons With Relevant Works

This section discusses the properties of existing methods,
analyzes their limitations, and provides more examples of
the main artifacts for each method.
SteReFo SteReFo [1] belongs to the classical layered
scattering or gathering-based method but with a careful
compositing process to “hide” the color bleeding problem.
The main issue of the existing methods in this direction suf-
fers from the unnatural boundary partial occlusion effect.
See the two main problems for SteReFo in Fig. 3 for exam-
ples. The reason for the first problem is that SteReFo does
not consider the occluded pixels, which leads to the hard
transition on the partial occlusion boundary. The reason for
the second problem is that the inter-layer blending weight
in SteReFo is not correctly handled.
DeepLens DeepLens [8] proposes a carefully-designed
neural network to learn lens blur rendering effectively. One
problem is the dataset used by DeepLens is generated by
an image space ray tracing method without considering the
occluded pixels. The other problem is that the learning pro-
cess does not naturally preserve the bokeh shape. See Fig. 4
BokehMe BokehMe [5] proposes a hybrid of the clas-
sical method and learning-based method to preserve the
bokeh shape and also correctly handle the boundary effects
by learning from data. BokehMe has done a good job on
avoiding the color bleeding problem, but fails to render nat-
ural partial occlusion effects. BokehMe tends to render the
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Figure 3. Main problems of SteReFo: One problem of SteReFo is that the transition boundary for the partial occlusion region is not
smooth. The other problem is that SteReFo exaggerates the boundary outward, making the bird in the second row bigger. Best viewed by
zoom-in.
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Figure 4. DeepLens problem: 1. The bokeh shape is not well preserved by DeepLens; 2. The boundary soft transition is not smooth in
the partial occlusion boundary. Best viewed by zoom-in.

blurry boundary similar to a glossy window. See Fig. 5 for
an example.
MPIB MPIB [6] is the State-of-the-art to handle the color
bleeding problem and natural partial occlusion effect ren-
dering simultaneously. MPIB is a variant of multiple plane

image (MPI) networks, applies a gathering kernel on the
MPI images and learns to blend the different layer results.
The common artifact for MPIB is that as it explicitly split
the scene into discrete layers, leaking artifacts (also reported
by the authors) show up for bad cases. We observe that it
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Figure 5. BokehMe problem: The transition boundary for BokehMe in partial occlusion is too blurry and lacks soft transition. Best
viewed by zoom-in.
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Figure 6. MPIB problem: Leaking artifacts are consistently shown up due to generalization issue. See the tail of the bird, shoulder of the
boy and the ground the boy is standing as an example. Best viewed by zoom-in.

shows up more frequently on unseen data. See Fig. 6 and
Fig. 7 as examples.

4.3. More Comparison Results

We provide extensive qualitative results (200 com-
parative results) in the supplementary(see the supple-
fig/index.html). In the supplementary, we provide 20 im-

ages with different lighting, including day or night, different
scenarios, including humans or animals, and different medi-
ums, including photography or paintings. In each case, we
show the results of focusing on ten different focal planes.
We only show part of the demonstrating results (see Fig. 7)
here.
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Figure 7. More demonstrating results. Best viewed by zoom-in. Please refer to supple-fig.pdf to see all provided results with RGB and
depth map inputs.
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Figure 8. Depth optimization for one pair data: The first col-
umn is the all-in-focus input image. The second column shows
results by Aperture [7]; the third column by GaussPSF [3], and
the last column results by Dr.Bokeh. The depth map optimized by
Dr.Bokeh has more details and is more accurate.
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Figure 9. Depth from defocus dataset. The first column is the all-
in-focus input image. The second column shows results by Aper-
ture [7]; the third column by GaussPSF [3], and the last column
by Dr.Bokeh. The depth map by Aperture is noisy. GaussPSF pre-
dicts smoother depth.Dr.Bokeh predicts smoother depth and keeps
more boundary details.

Figure 10. Qualitative comparisons of different loss: The first
image is the RGB input. The second image is the result of L1 +
Grad loss. The third image is the result of L1 + Grad + SSIM loss.
The last image is the result of L1 + Grad + HSSIM loss.

4.4. More Differentiability Evaluation

We show the qualitative results of the generated depth map
in Fig. 8 and 9. The depth map can either be obtained by
direct optimization over an all-in-focus image and a bokeh
image pair or by training a neural network to predict the
depth based on a large-scale defocus dataset. The direct

optimization over one-pair data can clearly show the depth
quality supervised by the differentiable rendering layer,
while the depth predicted by the trained neural network can
illustrate the overall performance of the differentiable layer
in the data-driven pipeline.

As shown in Fig. 8, Dr.Bokeh can obtain the best quality
depth image supervised by the defocus image as Dr.Bokeh
is more accurate in terms of the lens blur physics. Fig. 9
shows that Dr.Bokeh helps the neural networks learn to pre-
dict the best quality depth compared with related works.

We provide the qualitative results in our ablation study in
Fig. 10. The L1 + Grad loss makes the depth map relatively
noisy. The L1 + Grad + SSIM makes the results smoother
but loses some details. Our L1 + Grad + HSSIM gets a
smooth depth map while preserving the boundary details.
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