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Hyperparameter GPT-2 Ours

Architecture transformer decoder transformer decoder
Vocabulary size 50257 51290 / 52295
Max positions 1024 2060
Hidden size 768 768
Hidden layers 12 12
Attention heads 12 12
Number of MoEs - 6
Number of experts - 8
Layer norm epsilon 1e-05 1e-12
Attention probs dropout prob 0.1 0.1
Hidden dropout prob 0.1 0.1

Table 1. Hyperparameters for our GPT-2 baseline and proposed
model. Note for the vocabulary size, we experiment with two set-
tings for whether to add the special category and bbox tokens.

B@4 ↑ CIDEr ↑

Examples 1 2 3 1 2 3

Lout 5.4 1.8 1.6 95.9 52.5 51.2

w/ Lin 4.5 1.9 1.9 85.0 54.7 54.5
w/ 0.5Lin 5.3 2.0 2.0 86.6 54.6 55.6

Table 2. Loss analysis on class-aware in-context captioning task.

Examples
CA-ICL segmentation CA-ICL captioning

MIoU ↑ MAE ↓ B@4 ↑ CIDEr ↑ mAP ↑

0 45.70 0.094 2.8 65.7 0.2

w/o category information for CA-ICL captioning

1 56.17 0.167 6.6 95.6 1.5
2 59.21 0.132 1.7 45.5 1.7
3 60.85 0.128 0.8 32.6 1.6

w category information for CA-ICL captioning

1 58.04 0.110 5.3 86.9 10.9
2 61.65 0.101 2.3 60.9 0.8
3 62.33 0.098 2.3 62.2 1.5

Table 3. Analysis on in-context samples and category information.
We report the metrics utilized in our main experiments for the two
CA-ICL tasks.

1. Model Architecture and Configuration
We provide more details on the model architecture com-
pared with GPT-2 small as shown in Table 1, where each

Task prompt Input OutputClass

clock tower

blender

watermelon

scoreboard

Figure 1. Out-of-domain test in CA-ICL segmentation. We em-
ploy the non-overlapping classes of the LVIS dataset to create a
per-class mask pool, following the same approach used with the
MS-COCO dataset.

dense decoder layer is the same and the even-numbered
layer is replaced with the sparse decoder layer as discussed
in Section 3.3 of our main submission. Another notable
difference is the vocabulary size, We employ two different
settings: one that includes special category and bbox to-
kens, and another without them. Compared with GPT-2, we
adopt a smaller layer norm epsilon of 1e-12 to ensure stable
training.

2. Additional Quantative Analysis
Loss and padding analysis for CA-ICL captioning. In
this section, we delve into the effects of loss functions and
padding strategies on captioning performance. We employ
the baseline loss Lout, delineated in Section 3.3 of our main
submission, aligning the length of caption tokens with im-
age tokens via padding. We examine different CE loss
weights for the input image tokens in each context (denoted
as Lin). This setting is based on the intuition that image
captioning task may benefit from an increased focus on vi-
sual content because of the unbalanced sequence length be-
tween the image and text tokens. As indicated in Table 2,
the experiment results reveal that using only Lout surpasses
other configurations with Lin in a one-shot setting. In con-



Task prompt Input OutputClass

wool wool of a 
lamb.

wool being 
shaved off 
a sheep.

wrist a blue band 
on a wrist.

the wrist of 
a man.

yard
train yard 
full of 
trains.

two dogs in 
backyard.

wine glass of red 
wine.

bottle of 
wine on the 
counter.

Figure 2. Out-of-domain test in CA-ICL captioning. We employ
the non-overlapping classes of the Visual Genome dataset to cre-
ate a per-class pool, following the same approach as discussed in
Section 4.1 of our main submission.

trast, a composite loss of 0.5Lin + Lout achieves supe-
rior results in two- and three-shot scenarios. Consequently,
we adopt the 0.5Lin + Lout loss for individual captioning
tasks, while utilizing a consistent Lout during co-training
sessions.
In-context effectiveness analysis. We study the impact
of increasing the number of in-context pair examples and
whether to add category information in CA-ICL captioning
in the task prompt on the outcomes. We trained the model
using three in-context samples and inference with 1 to 3
samples. Additionally, we trained one model with explicit
class information input instead of in-context samples for
comparison. As presented in Table 3, with only class infor-
mation, the model performs pool on both tasks for the CA-
ICL segmentation task, which indicates the effectiveness
of in-context samples as they are given more information
than the simple class label. The inclusion of more exam-
ples consistently improves the segmentation performance.
However, for the CA-ICL captioning task, the performance
does not exhibit a steady increase, even more serious if cat-
egory information is not provided. The possible reason is
that using more in-text samples for the segmentation task
can provide more segmentation clues coming from different
views, and appearances of different image samples for the
same category of target object. But for the caption task, one
caption is already enough to denote the target object while
multiple description styles from different samples will in-
troduce more style ambiguity. From the perspective of per-
formance, we report the best results of the model with class
information for the captioning task. The problem of cap-
tioning is left to further study.

Time cost of different models. We calculate the fps metric
for the 1 in-context example setting to analyze the time cost.
The inference speed of our model using 0, 1, 2, 3 in-context
examples is 2.8, 2.4, 1.9, 1.4 fps, respectively. While for
SegGPT and OpenFlamingo, the fps is 7.7 and 0.3 img/s.
Our model is capable of using in interactive applications.

3. Additional Qualitative Results

In-context reasoning. To illustrate the in-context reason-
ing ability of our model, we provide qualitative results on
the two CA-ICL tasks. As illustrated in Figure 3, the model
shows excellent semantic understanding for both in-door
and out-door scenarios. Given suitable input prompts, the
model demonstrates exceptional reasoning capabilities in
segmenting instances that belong to the same category as
the in-context samples. Figure 4 showcases the model’s
ability to generate accurate captions with locations that pre-
cisely identify the region of the desired category, demon-
strating its strong reasoning capabilities as well.
Out-of-domain tests. To evaluate the efficacy of seman-
tic clues and the model’s capabilities, we conducted out-of-
domain tests on two distinct tasks. As illustrated in Figure 1,
the model demonstrates proficiency in utilizing cues from
in-context examples featuring categories not encountered
during training, thereby achieving dependable segmentation
results. Additionally, for the captioning task, we utilized a
per-category pool derived from the Visual Genome dataset,
specifically selecting category data that do not coincide with
the training categories. The results shown in Figure 2 fur-
ther revealed the model’s ability to generalize effectively to
unfamiliar categories.

4. Limitation and future work

Because of the long-tailed class and object scale distribu-
tion of the training dataset, the model does not perform well
with multiple small objects or uncommon classes like traffic
light. Some typical failure cases are presented in Figure 5
and Figure 6. We think a more balanced data distribution
may be beneficial for the situation. For example, utilizing
Copy-Paste strategies [1, 2] to expand the per-category in-
stance pool. For improving captioning, a potential solution
involves resampling the data or other data balancing strate-
gies. Another limitation is that the model only supports one
class per forward. Currently, the proposed model can sup-
port multiple categories by multiple times inference. The
color mapping strategy utilized in SegGPT might be help-
ful.

The proposed method can accommodate a more diverse
range of in-context learning tasks beyond the scope of class-
aware tasks. As we discussed in Section ??, the multi-
modal input will be quantized and mapped into the uni-
fied representation space. Therefore, all modal inputs quan-



tized by modality-specific quantizers can be modeled us-
ing our framework, regardless of the task. Next, we plan
to extend M2oEGPT to accommodate even more modali-
ties (e.g., web page, 3D vision, heat map, tables) and tasks
(e.g., image generation and editing, inpainting, and ground-
ing), also support high-resolution image and longer output,
broadening the system’s applicability such that it becomes
more general.
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Figure 3. Results of CA-ICL segmentation. Our model demonstrates robustness across in-context prompts, effectively handling objects
from diverse classes and accommodating variations in size and quantity. For better visualization, we overlay the mask onto the correspond-
ing image. In this setup, the blue area indicates the mask for in-context prompts, while the red area represents the output mask.



Task prompt Input OutputClass

bowl

cup A cup on the 
table

small cup of 
sauce.

The bowl 
contains food.

purple 
cabbage in a 
bowl.

fork

sandwich sandwich is 
next to fruits.

a sandwich on 
the plate.

a silver fork 
lying on the 
side of the 
plate.

a fork is on the 
table.

Task prompt Input OutputClass

cat

backpack man carrying 
backpack.

a red and 
black 
backpack.

an inside cat 
laying down.

the cat is on a 
desk.

chair

laptop
a black laptop 
on top of the 
desk.

a computer 
laptop in the 
foreground.

empty balck 
chairs.

a pair of gloves 
on the back of 
an office chair.

book

spoon spoon next to 
coffee cup.

a large metal 
spoon.

blue book in 
hands of kid.

a book on the 
table.

laptop

cup a small cup of 
mayo.

tall glass cup 
with a black 
base.

built in 
keyboard of 
laptop.

laptop sitting 
on a table.

train

clock a blue half 
clock.

the clock 
positioned 
towards the 
left on the 
pole.

train going 
down the 
track.

train on the 
tracks.

motorcycle

bench
horizontal 
gray slats on 
bench.

benches in the 
background.

two people on 
a motorcycle.

red and black 
motorcycle.

horse

zebra
zebras 
drinking in 
water

zebra with 
black and 
white stripes.

a brown horse 
eating grass by 
the water.

gray horse 
grazing on 
grass.

bowl bowl with 
black rim.

the bowl is 
clear.

dog 

bus a bus is on its 
regular route.

a bus on the 
street.

a black dog 
jumping.

a dog on the 
bus.

car a white car in 
a parking lot.

car driving on 
the street.

Figure 4. Qualitative results of CA-ICL captioning. Our model shows great semantic reasoning, accurately interpreting clues within
in-context samples. It generates relatively precise bounding boxes and descriptions that correspond well with the desired objects in the
images. To enhance visual clarity, we illustrate bounding boxes in in-context samples using red squares □, and the predicted bounding
boxes are marked in green □. Additionally, we emphasize category information in the captions by using red text.



Task prompt Input Ground truthClass

car

horse

traffic light

Output Visualization SegGPT

Figure 5. Typical failure case for CA-ICL segmentation. The model faces challenges in processing input images with numerous small
instances and also performs worse with categories that are infrequently represented in the training data. Zoom in for a better view.

Input Ground truthClass

car

cow

dog

OutputTask prompt

car going down 
a street.the car is blue.

white cow in 
green field.

a dog laying 
down.

cars are driving 
down the street.

a large black 
and white dog.

three cows in a 
pasture.

the one brown 
dog is laying 
down in the 
grass.

group of black 
and white cows.

Figure 6. Typical failure case for CA-ICL captioning. When facing multiple instances or small instances, the model may predict inaccurate
region location or wrong caption as highlighted in yellow. Zoom in for a better view.
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