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We first present more technical details on our character
model (Sec. A), and the depth testing approach for texel
visibility (Sec. B). Then, we provide more implementation
as well as data processing details (Sec. D and Sec. C), ad-
ditional results, and applications of our method (Sec. E,
Sec. F). We further show additional comparisons (Sec. G),
ablations (Sec. H), and analysis of methods closest to our
setting (Sec. I). Finally, we talk about the limitations of our
approach (Sec. J).

A. Deformable Character Model
Our character model takes a temporal motion M =
{(θt−W ,αt−W , zt−W )....(θt,αt, zt)} as input and de-
forms a template mesh capable of modelling loose clothing.
Here θt ∈ RP ,αt ∈ R3, zt ∈ R3 refer to the skeleton
degrees of freedom, root translation, and root rotation, re-
spectively. We leverage the explicit character representation
of Habermann et al. [3]

Ci(θt,αt, zt,A,T ,di) = vi, (1)

as it is differentiable, real-time, and models loose cloth-
ing. In their character formulation, the initial template T is
downsampled to an embedded graph [15] G with K nodes,
and the parameters A ∈ RK×3,T ∈ RK×3 are the rota-
tion and translation of each of the K nodes stacked on top
of each other, describing the coarse deformation of T in
canonical space. di ∈ R3 is the per-vertex displacement in
canonical space. The final location

yi = di +
∑

k∈Nvn(i)

wi,kR(ak)(v̂i − gk) + gk + tk (2)

of a vertex in canonical space yi ∈ R3 is determined
by the weighted addition of the rotation and translation of
its neighbours in the embedded graph Nvn(i), and finally
adding the per-vertex deformation di. Here, wi,k is the

weight the ith vertex assigns to node k. R(·) is the func-
tion that converts Euler angles to matrices. ak, tk are kth
rows of A, T respectively. v̂i is the ith vertex of T and gk

is the kth node of G.
Their model predicts A, T , and di using structure-aware

graph neural networks[3], referred to as feg(e(M)) and
fdelta(d(M)). e(·) and d(·) are their proposed motion to
embedded graph embedding and motion to vertex embed-
ding. Finally, they apply the skeleton pose to the deformed
vertex in canonical space yi to obtain the final deformed
vertex location

vi = z+
∑

k∈Nvn(i)

wi,k(Rsk,k(θ, α)yi + tsk,k(θ, α)), (3)

where the rotation Rsk,k, and translation tsk,k for node k are
determined by Dual Quaternion Skinning [5]. The vertex
matrix V ∈ RN×3 can be obtained by stacking vi.

B. Depth Testing
We address the texel visibility problem by using a depth
testing approach. We assign a 3D depth to each texel Tpos ∈
RTW×TH×3, using the barycentric coordinates of the face
it lands on. Then, we compute the depth Dc,V ∈ RH×W×3

and the texel to pixel mapping Fwarpc,V
: (u, v) → (x, y)

for a particular view c using differentiable rasterisation from
DeepCap [2, 4] given the camera parameters and the de-
formed vertex positions V . If the depth at a particular texel
(u, v) is within a ϵ norm ball to the depth of the pixel it
lands on, we mark it as visible, i.e.

Tvis,i(u, v) = |Di,V (Fwarpi,V (u, v))− Tpos(u, v)| < ϵ. (4)

C. Additional Data Processing Details
Each actor in our dataset is scanned using a commer-
cially available 3D scanner [17] where the mesh is obtained
from multi-view stereo reconstruction1. Following this, we

1https://www.agisoft.com
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Novel View Novel Pose

Method CD↓ HD↓ CD↓ HD↓

DDC 11.53 11.24 15.5 15.6
HDHumans 11.52 11.21 13.7 13.5

Ours 10.4 9.3 13.1 12.9

Table 1. Quantitative Comparison on Surface Distance. We
evaluate the surface tracking in the novel view and novel pose set-
ting on subject S1 and report the Chamfer (CD) and Hausdorff
(HD) distance with respect to the ground truth. Note that our
approach outperforms previous works, thanks to the additional
Chamfer penalty. This is significant in enhancing the quality of
our projective texturing pipeline. Error reported in mm.

Component FPS↑ Latency↓

Character Model 100 0.010s
Projective Texturing 27 0.037s

TexfeatNet 100 0.010s
SRNet 31.25 0.032s

Table 2. Runtime Breakdown. Here, we present a component-
wise runtime breakdown of our pipeline in terms of frames per
second (fps) and latency (in seconds s). Note that all of our com-
ponents run within the real-time limit of 25 fps.

downsample the high-resolution mesh to around 9000 faces
for each character. For character rigging, we apply mark-
erless motion capture [16] on the multi-view images from
the scanner to obtain the skeletal pose. Given the pose and
the template scan, we apply Blender’s2 automated skinning
weight computation. The UV parameterization is obtained
from a photometric stereo reconstruction software. How-
ever, the effect of UV parameterization and optimizing the
UV parameterization is a future work that we believe merits
further investigation.

D. Implementation Details
The obtained multi-view frames are processed with fore-
ground segmentation [9] and per-frame mesh reconstruction
using NeuS2 [18]. Motion tracking is obtained with a com-
mercial markerless capture system [16]. Our method is im-
plemented in TensorFlow [1] and trained using the Adam
optimizer [6] with a constant learning rate of 10−4 until
convergence.

The character model and the TexFeatNet are supervised
on images with a resolution of 1028 × 752 pixels, and the
SRNet is trained with a full image resolution of 4112 ×
3008 pixels. The projective texturing module uses images
of resolution 4112 × 3008 as input, and the texture maps
are generated at a resolution of 1024 × 1024 pixels. We

2https://www.blender.org

Ours GTw/ naive lossw/ high RF

Figure 1. Qualitative Ablations. Note that our design choices for
the SRNet module, lead to qualitatively better results, especially
at the borders of the human.

Figure 2. Application: Texture Editing. As we use explicit tex-
tures as an underlying latent for appearance, and they are tempo-
rally and spatially aligned, we can perform 2D texture edits such
as adding a logo onto the character’s shirt.

Method PSNR↑ LPIPS↓ (×1000) FID↓ Res.

w/ Naive Lsr 27.01 55.10 37.25 4K
w/ High RF 28.13 36.18 19.97 4K

Ours 28.75 32.4 17.42 4K

Table 3. Quantitative Ablations. Here, we ablate some design
choices in our SRNet module, in the novel pose setting on subject
S1. Note that choosing our Lsr formulation, and keeping a shal-
lower architecture lead to better performance.

randomly sample 10K points from the reconstructed surface
for the Chamfer loss for every frame.

TexFeatNet utilizes a UNet architecture [14], and SR-
Net is implemented as a shallow architecture with enhanced
residual blocks [7]. Our complete framework is trained us-
ing two Nvidia A100 GPUs with 80GB memory and a batch
size of four. Tab. 2 provides a runtime breakdown of our
modules.
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Method PSNR↑ LPIPS↓ (×1000) FID↓ Res.

w/o Texture 25.82 41.36 55.17 1K
w/o Features 28.37 31.30 21.05 1K
w/o Chamfer 27.83 30.35 15.76 1K

w/o SR 28.42 31.11 20.85 1K
w/o 4K 28.85 30.50 18.01 1K
Ours 28.03 28.49 13.26 1K

Ours w/o 4K 27.72 34.49 20.89 4K
Ours 27.22 33.17 15.26 4K

Table 4. Quantitative Ablations. Here, we ablate some major
design choices in the novel pose setting on subject S2 (loose cloth-
ing). Note that the efficacy of our design choices translates along
subjects.

Figure 3. Application: Holoportation. Our method produces
high-quality expressions, hands, and wrinkles in real time; hence,
it is well suited for telepresence applications like placing a charac-
ter in a virtual room.

E. Additional Results
We also provide additional results for our method on more
subjects in the novel view and novel pose setting (Fig. 7 and
Fig. 8). Our method also allows for exciting applications
like texture editing (Fig. 2) and placing the character in a
virtual room (Fig. 3).

F. End-to-end Sparse Camera Demo
We additionally show the result of our method using a 3D
skeletal pose recovered from four and eight cameras, re-
spectively, for different subjects (Fig. 4). Note that the re-
sult with four cameras demonstrates that our method can
also be integrated into an end-to-end sparse camera setup.

G. Additional Comparisons
We present additional qualitative comparisons in the novel
view and novel pose setting to animatable representations
(Fig. 9) and real-time sparse image-driven methods (Fig. 10
and Fig. 12). We also present a zoomed-in face comparison

Figure 4. Sparse Camera Pose Tracking. We present results
using 3D pose tracking from fewer cameras (numbers below image
represent number of cameras used). The tracking inaccuracies lead
to artifacts; however, the quality remains relatively high even with
four cameras.

Figure 5. Comparison with a zoomed-in virtual view. Here we
present a result, where we render a view close to the face. Notice
the ability of our method to capture facial expressions with much
higher fidelity.

of our method to show our efficacy in capturing face ex-
pressions (Fig. 5). In Tab. 1, we compare the quality of our
geometry reconstruction against competing methods. Our
approach provides quantitative improvements in the Cham-
fer (CD) and Hausdorff metrics (HD).

H. Additional Ablations

Here, we provide some additional ablation results (Fig. 1
and Tab. 3). We ablate our SRNet module by replacing it
with a naive loss that is the same as Lren and find that this
performs quantitatively worse and also qualitatively (espe-
cially at the borders). Also, replacing a shallow SRNet ar-
chitecture with a deeper architecture that utilizes UNet [14],
and additional upsampling layers leads to worse multi-view
consistency, which can be seen quantitatively and qualita-
tively. Additionally, we also add an ablation for our major
components, on a subject in loose clothing (Tab. 4).

I. ENeRF and DVA Analysis

We additionally provide more details on how we compared
to ENeRF [8] and DVA [13], as they are closely related
to our setting. ENeRF is a general method that gener-
ates novel views from sparse source camera views and even
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Figure 6. Large-scale Training. We present a novel view synthe-
sis (replay), the result from DVA when it is trained on 300 frames,
and when it’s trained on 18000 frames. Note that the frame visu-
alized is part of the training frames. While DVA can capture high-
fidelity details, when trained with fewer frames, the performance
deteriorates as the number of frames increases. In contrast, ours
maintains high fidelity, even as the number of frames increases.

demonstrates impressive generalizability to completely un-
seen scenes. However, in their setting, they utilize nearest
views at test time from a dense setup to produce the target
view, which violates our requirement for only a fixed num-
ber of cameras at test time. Hence, to compare with them,
we retrain their method in the same setting as ours (infer-
ence using four fixed cameras). We observe their method
faces multi-view consistency artifacts due to a lack of re-
liable human priors for depth, and as their final color is a
weighted combination of the source colors (see Fig. 10 and
Fig. 12).

DVA achieves photorealistic telepresence in real-time
from sparse cameras and 3D skeletal pose. They released
a version of their source code, which relies on SMPLX [11]
for mesh tracking and provided scripts to reproduce results
on the ZJU dataset [12]. First, we reproduce results on the
ZJU dataset. Then, to test their robustness to loose clothing
and challenging poses, we evaluate on the DynaCap dataset.
We used SMPLX tracking from twenty cameras and trained
their method in the same setting as ours. We observe while
they can do replay and novel view synthesis with high qual-
ity if we train only on small sequences (300 frames), their
result becomes blurry when trained on more frames (see
Fig. 6). We hypothesize that this is caused by the fact that
their volume primitives have to model fine-scale deforma-
tions and appearance at the same time, while the capacity of
the network is too limited to model both of those aspects of
the human. Additionally, we observe that the model fails to
converge on loose clothing, as their volume regularizer pre-
vents primitives from moving far away from the SMPLX
initialization, which is imperative in the case of loose cloth-
ing (see Fig. 12). Ours, in contrast, deals with deformations
separately in the explicit character model, which allows us
to maintain appearance quality even as the number of train-
ing frames increases.

J. Limitations and Future Work
Though our work is a clear step towards more immer-
sive and photorealistic avatars, there are remaining chal-
lenges yet to be addressed in the future. For example, our
method, similar to other prior works, does not allow to
model topological changes, e.g. opening a jacket. Future
work could explore layered human representations, poten-
tially able to model such effects. Flickering artifacts oc-
cur in our method, due to inconsistent color calibration of
the multi-view cameras. We believe a joint optimization of
camera parameters, i.e. color, extrinsic, and intrinsic cali-
bration, can potentially resolve this limitation. Additionally,
tracking errors in the case of fast motions, e.g. jumping,
may result in artifacts in the renderings. Tightly entangling
the tracking and rendering might resolve this in the future.
Moreover, we currently require a dense studio setup to ac-
quire the photoreal avatar. In the future, we plan to explore
more lightweight setups even for training the model. Last,
our projective texturing takes the learned geometry from the
deformable character model as input while not being able to
further refine it throughout the training. We believe differ-
entiable projective texturing could be an interesting direc-
tion to tackle this problem.

4



Figure 7. Results from our method in the novel view synthesis setting for five different subjects. Our method faithfully reconstructs
fine details such as wrinkles (S1, S3), loose clothes with large deformations (S2), rich textures (S4), and hand poses.
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Figure 8. Results from our method in the novel pose synthesis setting for five different subjects. The results are rendered from a
novel view point not seen during training. Our method results in impressive renderings, providing very realistic wrinkle patterns and high-
frequency details.
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Figure 9. Comparison of our method with previous pose-driven approaches. Note how DDC [3] and Neural Actor (NA) [10] fail to
produce high-frequency details and cloth wrinkles, while our method produces high-quality renderings for both novel view and novel pose
settings.

7



Novel PoseNovel View

O
u
rs

G
T

Close Camera Close CameraFar Camera Far Camera

D
V

A
E

N
eR

F

Figure 10. Comparison of our method with existing real-time approaches that take images as input. Note how ENeRF [8] produces
artifacts under novel camera views and how DVA [13] suffers from inaccurate tracking, resulting in blurry renderings. On the contrary, our
method generalizes well to far camera viewpoints and produces sharp results.

8



Ours GTw/o SRw/o Texture w/o Features w/o 4K

P
os

e 
1

P
os

e 
2

Figure 11. Qualitative results considering the contributions of the components from our method. Without texture, results fail to reproduce
fine details. Without the SR module and the features as additional input further degrades the borders and the high-frequency details. Finally,
without 4K training, the results are less sharp compared to our method.
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Figure 12. Comparison to ENeRF and DVA on Loose Clothing.
ENeRF [8] can handle loose clothing reasonably well, but suffers
from artifacts in other body parts (like in the hands). DVA [13]
fails to converge on loose-clothed subjects, leading to artifacts in
areas like the skirt. In contrast, as our character model can handle
loose clothing, we produce sharp results with details preserved.
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