
Emu Edit: Precise Image Editing via Recognition and Generation Tasks

Supplementary Material

7. Data
Fig. 7 shows the tasks composing our dataset and their dis-
tribution.

Figure 7. Distribution of the tasks in our training dataset.

7.1. Instruction Generation

We generate instructions utilizing the dialogue-optimized
70B parameter Llama 2 variant. We use a temperature of 0.9
and set the top-p value to 0.9. We employ LLM in-context
learning to generate instructions. Figs. 16-17 demonstrate
the prompts used for task Add. A similar approach is used
for the remaining tasks. We instruct the LLM to generate
instructions similar to, but diverse from, the examples pro-
vided.

To achieve this, we supply the LLM with the following:
(1) a system message describing the input and output for-
mats, (2) an introduction message in which we outline the
problem and the goal for each key in the output, and, (3)
a historical context of the conversation with the LLM con-
taining examples for possible outputs. We then prompt the
LLM with a new input caption and ask it to provide a new
instruction. To encourage more variance and randomness
in the LLM-generated instructions, we perform the follow-
ing on the historical context: (1) shuffling between exam-
ples, (2) randomly sampling 60% of the examples, and, (3)
randomly changing the verbs in the examples from a set of
words.

7.2. Image Pairs Generation

Below we describe in detail our image generation methods
for all the tasks. The image pair generation phase uses an

image caption, and the corresponding output caption, "orig-
inal object", and "edited object" that the LLM generated in
the instruction generation phase.

7.2.1 Grounded Precise Editing

As described in Sec. 3.2, we integrate the mask m of the
edited area, during the editing process, to ensure seamless
blending of edited regions with the original image. We call
this operation mask-based attention control. Blending is de-
fined as follows: xt ·m+(1−m) ·yt, where xt is the noisy
edited image in step t, and, yt is the noisy version of the
input image in step t. In the first blends percent of the steps
we replace each of the noisy generated images with the cor-
responding noisy version of the input images. In the rest
of the steps we use blending. The purpose of this, is to en-
sure structure preservation between the input and the edited
image. We continue by following P2P and inject the self
attention layers. Cross attention layers are injected on the
common tokens between the input and output captions. We
denote by Nc, and Ns the portion of steps where we share
cross attention and self attention maps, correspondingly.

7.2.2 Mask Extraction

Region-based editing includes all the editing instructions
that perform changes to the image in a limited region, leav-
ing the rest of the image unchanged. To adjust a particular
object or location while preserving the rest of the details, we
utilize a mask of the local area in the editing process. We
utilize DINO [14] to detect the area that needs to be masked,
using the "original object" and "edited object" fields that
were generated in the previous stage (Sec. 7.1).

Dilation, Gaussian Blurring and Bounding Box Masks:
We observe that when utilizing mask-based attention con-
trol to generate an edited image, it often replaces the object
with a similar object type instead of removing it. For ex-
ample, when masking the region around a dog, we confine
the editing to that specific area, resulting in the generation
of a new variation of the dog. We address this issue by
creating three different types of masks. The first employs
the original precise mask, created by DINO and SAM [11].
The second involves expanding the mask beyond the added
object through dilation and then refining it using Gaussian
blurring. Finally, the third approach uses the bounding box
around the object (created by DINO), thereby eliminating
the constraints of a specific shape. We generate multiple
images, each with a different mask, and then filter for the
best image. Our filtering is described in Sec. 3.2.



Possessive words: In some cases the "original object"
and "edited object" generated by the LLM contain posses-
sive words (e.g, "a dog’s tail"). We observe that, in many
cases, DINO struggles to detect the object in these cases. To
this end, we employ an additional prompting to the LLM to
identify the object without possession.

7.2.3 Region-Based Editing Tasks

Local/Texture Given the input caption, we first gener-
ate the input image. Then, we utilize the "original object"
(as described in Sec. 7.2) to extract the local mask (using
Sec. 7.2.2). Lastly, we apply masked-based attention con-
trol using the obtained mask to generate the edited image.
We repeat this entire process for 10 iterations, where in each
iteration, we sample the guidance scale from [4, 8], Nc and
Ns from [0.3, 0.9], and blends from [0.02, 0.2].

Add Extracting the mask of the "edited object" (the ob-
ject that was added in this case) is not possible in advance
because the object does not exist in the input image. To
overcome this challenge, we address this as follows:
1. We generate the output image y using the output caption.

Note that the image y contains the "edited object".
2. The mask m of the "edited object" in y is extracted.
3. We apply the mask-based attention control to generate

the input image x using the input caption, the image y
and the mask m

The main problem with this approach is that in certain
instances, we generate a different version of the object, in-
stead of eliminating it, as described in Sec 7.2.2.

Remove. The process of generating data for Remove task
is similar to the one of Add task. The only difference is
that we first generate the image x (using the input caption),
then extract the mask m of the object to remove, and finally
generate the image y using the output caption, image x and
the mask m.

Background. Given an input image, input caption and the
edited object (in this case, the alternative background), we
first extract the background mask. To eliminate artifacts
in the contour, we apply minimum filter which extends the
background mask and then smooth it using Gaussian filter-
ing. Next, we provide the image and the resulting mask
as input to an inpainting model, which creates a new back-
ground. Lastly, we blend the input image and the edited
image in the mask region. We generate 10 edited images,
with different noise and guidance scale, and pick the best
according to CLIP metrics.

7.2.4 Free-Form Editing Tasks

Global. The global task includes editing instructions that
are not restricted to a specific area. Therefore, we generate
the image pairs using mask-based attention control with a
blank mask. blends is sampled from [0.1, 0.2] to encour-
age better image faithfulness. We sample Nc and Ns from
[0.4, 0.9].

Style. We use Plug-and-Play (PNP) [25] to generate the
stylized edited images. The goal of this task is to alter the
image style according to the editing instruction while pre-
serving the image structure. We apply PNP on the real input
images using DDIM inversion. For each sample, we gener-
ate 10 edited images, each with the following parameters
sampled: guidance scale sampled from [6.5, 10.0], Ns from
[0.5, 1.0], and, the portion of spatial features to share is set
to 0.8.

Text Editing. The text editing task includes adding text to
the image, removing text from the image, and replacing one
text with the other. In addition, we allow the user to choose
the font and the color of the added text. We generate a mask,
m, of the text found in the input image, x, using OCR [7].
We utilize mask m to inpaint the image, denote the new
image y. For adding text, we use y as the input image and
x as the edited image. For removing text and replacing text,
we use the reverse. When replacing text, we overlay the
inpainted region in image y with a text in a specific font and
color.

7.2.5 Vision tasks

Detect/Segment. Given an input image, we detect the
"edited object" using DINO. To formalize detection as a
generative task, we create a new image y by drawing the
detected bounding box. For segmentation, we paint the de-
tected object pixels.

Color. We define the Color task as a modification to the
overall colors of an image. We generate samples by apply-
ing the following filters: (1) color filters - randomly chang-
ing the brightness, contrast, saturation and hue of an image,
(2) blurring - applying random-sized Gaussian kernels, and
(3) sharpening and defocusing.

Image-to-Image Translation Tasks that involve bi-
directional mapping from conditioning images to target im-
ages. For instance, sketch-to-image and image-to-sketch.
We follow [30], to generate depth maps, segmentation
maps, human poses, normal maps and sketches.



Table 5. Data generation pipeline evaluation. We compare our
data generation pipeline with that of InstructPix2Pix. We also re-
port the automatic metrics on the InstructPix2Pix training dataset.

Task Method CLIPdir CLIPim CLIPout L1↓ DINO↑

Local IP2P 0.329 0.922 0.270 0.046 0.917
Our 0.402 0.927 0.289 0.029 0.908

Texture IP2P 0.282 0.876 0.297 0.189 0.671
Our 0.373 0.957 0.296 0.033 0.923

Remove IP2P 0.204 0.818 0.254 0.067 0.755
Our 0.279 0.913 0.266 0.046 0.841

Add IP2P 0.263 0.897 0.278 0.157 0.934
Our 0.318 0.962 0.304 0.007 0.925

Global IP2P 0.281 0.916 0.276 0.103 0.845
Our 0.315 0.919 0.289 0.081 0.869

Background IP2P 0.106 0.829 0.271 0.082 0.725
Our 0.214 0.843 0.283 0.201 0.771

IP2P Dataset 0.172 0.855 0.271 0.119 0.809

8. Dataset Evaluation

In Sec. 3 we introduce our dataset generation pipeline,
which includes methods that address the unique difficulties
associated with each particular task. In this section we com-
pare our approach with that of InstructPix2Pix. We begin
by sampling 6,000 random samples from the same distri-
bution of Sec. 3, following the instruction generation stage.
Hence, each sample contains the input image, input cap-
tion, editing instruction, output caption, and the edited ob-
jects. We then generate image pairs using both our data
generation pipeline, and that of InstructPix2Pix, which em-
ploys Prompt-to-Prompt and CLIP-based filtering. In Tab. 5
we report automatic metrics comparing the outputs of each
pipeline. As can be seen, our method for data generations
outperforms that of InstructPix2Pix (IP2P) on all the tasks.
Additionally, to isolate the effect of our instruction gener-
ation stage, we also directly evaluate the InstructPix2Pix
training dataset, which also underperforms when compared
to ours.

Table 6. Number of images per task and split in our Image Editing
Benchmark

Task Validation set Test set

Add 264 533
Background 266 373
Color 262 519
Global 220 219
Remove 264 531
Local 256 446
Style 227 434

0 1 3 4 7
Number of tasks excluded

0.1000

0.1025

0.1050

0.1075

0.1100

0.1125

0.1150

0.1175

CL
IP

 d
ire

ct
io

n

Tasks excluded:
(1) bg
(3) bg, add, remove
(4) bg, add, remove, local
(7) bg, add, remove, local, cv

Tasks excluded:
(1) remove
(3) remove, global, bg
(4) remove, global, bg, add
(7) remove, global, bg, add, cv

Figure 8. Ablation on the model performance (CLIPdir) on Style
and Texture tasks as we progressively exclude tasks that don’t fall
within these categories.

9. Image Editing Benchmark
We take the images from the MagicBrush benchmark [29]
and undergo a three-step annotation process utilizing crowd
workers: (i) instruction generation, (ii) instruction filtering,
and, (iii) caption annotation. In the first step, three crowd
workers are assigned to generate an instruction for each (im-
age, task) pair. Moving to the second stage, five different
crowd workers classify each (image, instruction) pair’s task
type and whether the instruction is relevant to the image.
Instructions with at least one irrelevant annotation are then
filtered out, and for the remaining ones, the task is deter-
mined through majority voting among the five workers. At
this juncture, we select, at most, a single instruction for each
(image, task) pair to preserve the benchmark’s diversity.

Finally, we task crowd workers with annotating two cap-
tions for each remaining (image, instruction) pair - one
for the image, and one for the desired image after having
edited it. This facilitates automatic evaluation using the
methodologies outlined in [9, 25]. Throughout this anno-
tation phase, workers are presented with the input image
and instruction, and are tasked with providing captions that
faithfully describe the image while aligning with the given
instruction. See Tab. 6 for the number of images per task
and split in our benchmark.

10. Additional Results
10.1. Performance on Vision Tasks

We also evaluate the performance of our model on tasks
other than edit, specifically: detection, segmentation, and
depth estimation. We report: (i) Mean Average Preci-
sion (mAP@0.5) on MS-COCO [13] for detection task, (ii)
Mean Intersection over Union (mIoU) on ADE20K [31, 32]



Table 7. Comparison of Emu Edit to task-specific experts on image-editing tasks. We report automatic metrics and human preference
ratings. Human evaluation (%) is shown as a percentage of majority votes in favor of our multi-task model compared to an expert model.

Task Method CLIPdir ↑ CLIPimg ↑ CLIPout ↑ L1↓ DINO↑ Text Image
Align. Faith.

Local Expert 0.139 0.879 0.244 0.057 0.841 - -
Our 0.142 0.885 0.252 0.047 0.891 57.5 56.9

Global Expert 0.106 0.820 0.227 0.096 0.823 - -
Our 0.118 0.852 0.235 0.072 0.847 58.4 62.6

Add Expert 0.119 0.851 0.237 0.059 0.828 - -
Our 0.123 0.917 0.240 0.036 0.892 61.1 59.6

Background Expert 0.145 0.689 0.229 0.240 0.560 - -
Our 0.157 0.852 0.240 0.223 0.586 64.3 62.5

for segmentation task, and, (iii) Root Mean Square Er-
ror (RMSE) on NYUv2 [16] for monocular depth estima-
tion. Emu Edit was not trained on those datasets, therefore,
we report zero-shot results on both tasks, see Tab. 8.

Table 8. Emu Edit performance on vision tasks. For object detec-
tion we use mAP@0.5, for segmentation we use mIoU, and, for
depth estimation we use RMSE.

Method Object Semantic Depth
Detection↑ Segmentation↑ Estimation↓

Emu Edit 61.467 50.028 0.246

10.2. Additional ablations.

To further isolate each component’s contribution, we
train 3 additional variants and compare them to In-
structPix2Pix (IP2P) in Tab.9. Each variant modifies one
component, starting from IP2P baseline: (1) we replace
IP2P’s base model with Emu to isolate the base model
contribution (A1), (2) we add task embedding to A1,
demonstrating its significant impact on performance (A2).
Although A1-A2 and IP2P are trained on IP2P data,
the best performance is achieved when utilizing the task
embedding, reinforcing its importance. Last, we train IP2P
on our dataset (B), yielding better results than IP2P but
inferior to Emu Edit, highlighting both data and model
contributions.

10.3. Controlling the Task Embedding

As depicted in Fig. 9, altering the task embedding controls
the task executed by the model, resulting in different gener-
ations for a given instruction.

10.4. Influence of Number of Tasks

We report results for the ablation of the number of tasks in
Fig. 8.

Input Predicted Global Text

Add
pink

Input Predicted Local Background

Make
it

cartoon

Input Predicted Style Segment

Change
to

living
room

Figure 9. Controlling the Task Embedding. For each sample, we
present the edited image using the task predicted by the task pre-
dictor. In addition, we present the edited image generated using
the same input image and instruction, but with different task em-
beddings. For instance, in the first row we generate the edited
image using the predicted task (Add), Global task, and Text task.

10.5. Few-Shot Learning of New Tasks

Fig. 12 illustrates generation examples produced by our
model for various tasks learned in a few-shot setting. Addi-
tionally, the performance results of our model on the tasks
of super resolution and contour detection are presented in
Fig. 10.

10.6. Qualitative Comparisons with Existing Ap-
proaches

Figs. 14 and 15 shows qualitative comparisons with base-
lines on generated samples. In addition, in Figs. 18 and 19
we present qualitative comparisons of our model with base-
lines on Emu Edit test set.



Table 9. Human evaluation shows the % of raters prefer the our model variant over InstructPix2Pix.

Emu Edit Test Set MagicBrush Test Set

Variant CLIPdir CLIPimg CLIPout L1 Text Img CLIPdir CLIPimg CLIPout L1 Text Img
Align. Faith. Align. Faith.

A1 0.089 0.849 0.226 0.117 63.3 61.8 0.120 0.864 0.256 0.086 60.9 63.7
A2 0.095 0.857 0.227 0.113 69.6 66.0 0.127 0.875 0.257 0.084 68.7 67.1
B 0.092 0.862 0.226 0.086 68.5 71.1 0.129 0.876 0.261 0.051 69.0 70.0

(a) Super Resolution (b) Contour Detection

Figure 10. Few-shot performance for different tasks over 1, 10,
and 100 samples. Each line represents a different training set-
ting: ’Scratch’ finetune (Blue, ⃝), Emu Edit finetune (Orange,
□), task inversion (Green, △), all compared to an upper-bound
expert trained on 100k samples (Red dashed line, ♢).

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

w/o clipping

with clipping

Number of edits

L
P
IP

S
 ↓

Metric α

0 0.01 0.03 0.1 0.2

LPIPS 0.652 0.596 0.487 0.410 0.348
CLIPout 0.225 0.225 0.225 0.216 0.194
CLIPdir 0.135 0.139 0.152 0.138 0.101

Figure 11. Sequential editing in multi-turn. left-the influence on
image quality degradation, right-the influence of different thresh-
old (α) values.

10.7. Sequential Edit Thresholding

To demonstrate the generic utility of our sequential editing
technique, we conduct the following experiment: we sam-
ple 200 images from Emu Edit development set, and gen-
erate 10 consecutive instructions for each. We then apply
multi-turn editing with and without our technique. We re-
port LPIPS results between the input and edited images for
each turn in Fig.11-left and observe a significant quality im-
provement with our technique. Tab.11-right examines the
influence of different thresholds after 10 edits. As can be
seen, a value of 0.03 strikes a good balance between image
quality and text faithfulness.

Qualitative comparison. In Fig. 13, a qualitative com-
parison is provided to demonstrate the effectiveness of the
proposed technique in maintaining image quality during

multi-turn editing scenarios. Specifically, we vary the value
of the hyperparameter α, which controls the degree to which
pixel values are used during the editing process. With
α = 0, no thresholding is applied and the output image
is simply the result of passing the input image through the
model. Conversely, when α = 1, the input image is used
as the output image without any editing. We present results
for several values of α, including 0.5, 0.25, 0.1, 0.05, 0.025,
0.01, and the baseline value of 0. As can be observed from
the figure, when no clipping is applied (i.e., α = 0), artifacts
tend to accumulate and manifest as general noise in the out-
put image. On the other hand, applying a threshold helps
preserve the quality of the output image even when multi-
ple edit turns are applied. However, using a large value of α
can interfere with the editing process and result in poor edit
quality. Based on these observations, we opt to use a value
of α = 0.03 in our experiments, as it strikes a balance be-
tween preserving image quality and allowing for effective
editing.

11. Implementation Details
We use a scaled-down version of [6] which is conditioned
on CLIP ViT-L [18] and T5-XL [19], and generates images
at a resolution of 512 × 512. We adapt it to obtain image
inputs by concatenating to the input channels following [2].
We condition on the text and task embeddings both through
cross-attention and by addition to the timestep embeddings.
For training, we employ the Adam optimizer with a batch
size of 512. We use a learning rate of 2e-5 with a cosine de-
cay schedule and a linear warmup of 2,000 iterations. Emu
Edit is trained for 50k iterations on 128 A100 GPUs for 19
hrs. During inference, Emu Edit runs for 50 diffusion steps
in 4 secs. Optimizing a task embedding for new tasks takes
15 min on a single GPU.



Add
sunglasses
and detect

them

Add a
butterfly

and detect
it

Add pumpkins
next to the

squirrel and
change the

style to
3D rendering

Include a
flock of birds

flying and
make it a
vintage

photograph.

Fill the
missing
pixels:

halloween
giant chocolate

chip cookie

Fill the
missing
pixels:

a view of
a city

from afar

Mark the
watch
faces

Mark
the

furniture

Upsample
the

resolution

Upsample
the

resolution

Input Emu Edit Input Emu Edit

Figure 12. Generations of our model on unseen tasks with task inversion. From top to bottom: (i) composition of add and detect tasks, (ii)
composition of add and style tasks, (iii) image in-painting, (iv) contour detection, (v) super-resolution.



A dog playing guitar

on the beach
Turn to an electric guitar Make the sea wavy Change dog color to white Turn guitar to red Add the word "Hello" Replace stone with sea shell Make it cloudy

α = 0

α = 0.01

α = 0.025

α = 0.05

α = 0.1

α = 0.25

α = 0.5

Figure 13. Effect of Sequential Edit Thresholding during sequential edits (from left to right) with different α values.



Input Emu Edit InstructPix2Pix MagicBrush

Give
him

sneakers

Put a
big smile

on his face

Replace
nose with

chicken beak

Change his
color to

linear blue
gradient

Add
him

wings

Set the
background

to VR
world

Figure 14. Qualitative comparison with baselines.



Input Emu Edit InstructPix2Pix MagicBrush

Replace Emu
with

peacock

Make it
a Bansky
painting

Cover the
house with

candies

Remove
the
car

Figure 15. Qualitative comparison with baselines.



1 def get_content_instruction(new_prompt):
2 optional_verbs = choice(["include", "place", "position", "set",
3 "incorporate", "alongside", "give", "put", "insert", "together with",
4 "with", "make", "integrate", "have", "append", "make", "add", "include"])
5

6 # system message #
7 system_message =
8 f"<<SYS>>
9 You are an assistant that only speaks JSON. Do not write normal text.

10 The assistant answer is JSON with the following string fields:
11 'edit', 'edited object','output'. Here is the latest conversation between
12 Assistant and User.
13 <</SYS>>"
14

15 # introduction message #
16 intro_message =
17 f"[INST]User: Hi, My job to take a given caption ('input') and to output the following:
18 an instruction for {optional_verbs} an object to the image ('edit'), the object to
19 {optional_verbs} ('edited object'), and the caption with the object ('output').
20 Please help me do it. I will give you the 'input', and you will help.
21 When you reply, use the following format:
22 {"edit": '<instruction>', 'edited object': '<object>', 'output': '<caption>'}[/INST]
23 Assistant: Sure, I'd be happy to help! Please provide the actual input caption you'd
24 like me to read and I'll assist you with writing an instruction to {optional_verbs} an
25 object to the image, writing the added object and writing the caption with the object."
26

27

28 # shuffling #
29 random.seed(torch.randint(1 << 32, ()).item())
30 shuffle(few_shot_examples)
31 few_shot_examples = few_shot_examples[:int(len(few_shot_examples) * 0.6)]
32 prompt = system + intro_message + "".join(few_shot_examples)
33

34 # add the test prompt #
35 prompt = prompt + f"[INST]User: {new_prompt}[/INST]"
36

37 return prompt

Figure 16. An example of in-context learning for the task of Add.



1 few_shot_examples = [
2 [INST]User: "Beautiful cat with mojito sitting in a cafe on the street"[/INST]
3 Assistant: {"edit": "include a hat", "edited object": "hat", "output": "Beautiful cat wearing a

hat with mojito sitting in a cafe on the street"}
4 [INST]User: "robot playing chess at home."[/INST]
5 Assistant: {"edit": "add a cheerful smiling face.", "edited object": "robot", "output": "robot

playing chess at home with a cheerful smiling face."}
6 [INST]User: "A cute creature sits at the beach."[/INST]
7 Assistant: {"edit": "set a dog besides the creature", "edited object": "dog", "output": "A cute

creature and a dog sit at the beach."}
8 [INST]User: "Superhero on the street in sunny day working on his tablet."[/INST]
9 Assistant: {"edit": "put a vintage tie on the superhero.", "edited object": "tie", "output":

"Superhero with a vintage tie on the street in sunny day working on his tablet."}
10 [INST]User: "Picture clouds, birds, the wind, foliage, rainbow, hill, art, pair, guy"[/INST]
11 Assistant: {"edit": "together with a dog on the left", "edited object": "dog", "output":

"Picture clouds, birds, the wind, foliage, rainbow, hill, art, pair, guy, dog on the left"}
12 [INST]User: "horse on a red Boat Near Mountains During Golden Hour"[/INST]
13 Assistant: {"edit": "give the horse sunglassess", "edited object": "sunglassess", "output":

"horse with sunglassess on a red Boat Near Mountains During Golden Hour"}
14 [INST]User: "An animal family on studio background."[/INST]
15 Assistant: {"edit": "make them hold a teddy bear.", "edited object": "teddy bear", "output": "An

animal family holding a teddy bear on studio background."}
16 [INST]User: "Baked Salmon With Bell Peppers"[/INST]
17 Assistant: {"edit": "insert kale pesto to the dish", "edited object": "kale pesto", "output":

"Baked Salmon With Kale Pesto And Bell Peppers"}
18 [INST]User: "An airplaine is flying in the sky in rainy day."[/INST]
19 Assistant: {"edit": "add flowers in the windows", "edited object": "flowers", "output": "An

airplaine with flowers in the windows is flying in the sky in rainy day."}
20 [INST]User: "photo of mountains and trees"[/INST]
21 Assistant: {"edit": "position a castle between the trees", "edited object": "castle", "output":

"photo of mountains, trees and castle between the trees"}
22 [INST]User: "Little bunny in the park"[/INST]
23 Assistant: {"edit": "Make the bunny play with a kite.", "edited object": "kite", "output":

"Little bunny playing with a kite in the park"}
24 [INST]User: "Attic Bedroom With Large Ceilings"[/INST]
25 Assistant: {"edit": "decorate the room with beautiful chandeliers", "edited object":

"chandeliers", "output": "Attic Bedroom With Beautiful Chandeliers on Large Ceilings"}
26 [INST]User: "Wedding rings and yellow flower on a red background"[/INST]
27 Assistant: {"edit": "place a bird by the yellow flower", "edited object": "bird", "output":

"Wedding rings, a bird, and yellow flower on a red background"}
28 [INST]User: "Tree Near the lake in the morning"[/INST]
29 Assistant: {"edit": "Give it autumn leaves on top", "edited object": "leaves", "output": "Tree

with autumn leaves on top Near the lake in the morning"}
30 [INST]User: "robot and alien sitting on hanging bridge at daytime"[/INST]
31 Assistant: {"edit": "make them hold three books.", "edited object": "three books", "output":

"robot and alien holding three books while sitting on hanging bridge at daytime"}
32 [INST]User: "Skogafoss waterfall in the south of Iceland"[/INST]
33 Assistant: {"edit": "Set a colorful rainbow in the backhground!", "edited object": "rainboe",

"output": "Skogafoss waterfall with a colorful rainbow in the south of Iceland"}
34 [INST]User: "Polar Bear with rubber gloves pushing shopping carts"[/INST]
35 Assistant: {"edit": "Make it wear a coat", "edited object": "coat", "output": "Polar Bear with a

coat pushing shopping carts"}
36 ]

Figure 17. Examples of prompts for Add task.



Let the
keyboard
be yellow

Remove the
forks from the

shelf

Add a green
bowl on the

branch

Add the word
’hi’ in graffiti

font to the side
of the truck

Make the
donut an

apple

Turn the
umbrella into
a palm tree

Add a dog
chasing its own

tail in the
middle of the

carpeted room.

Original Emu Edit InstructPix2Pix MagicBrush P2P

Figure 18. Qualitative comparison of our model to baselines on Emu Edit Test Set.



Turn the
refrigerator into
a bookshelf with

books

Change the image
to have a 1970s

pop art style.

Remove the
Christmas trees

on the table

Put Stone Henge
as the background

of the scene.

Change the
color of the

lighthouse into
completely red.

Remove the
curtains.

Add the word
’sky’ in white

to the sky.

Original Emu Edit InstructPix2Pix MagicBrush P2P

Figure 19. Qualitative comparison of our model to baselines on Emu Edit Test Set.


