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Supplementary Material
In this file, we provide detailed proof of Theorem 2 in the main text, derivations of our initialization scheme and more

experimental results on various tasks. We provide detailed proof of our Theorem 2 in section A and present the derivations
of our initialization scheme in section B. A detailed ablation study on our hyper-parameters: frequency number and phase
number, is presented in D. In section E, we provide 2D image approximation results of more activation functions and input
adjustment techniques and show more visual examples and results under other metrics. In section F, we present more
experimental results on the shape representation task. Lastly, in section G, we show more view synthesis results by our
method and provide the full results of three NeRF frameworks [3, 4, 7].

A. Detailed proof of Theorem 2
Recall that we define L(k) as the loss function at frequency k:

L(k) = |F [fΘ](k)−F [g](k)|2. (1)

Then we have the following Theorem 2.
Theorem 2. Given a MLP with multiple hidden layers, reparameterize the weight matrix W ∈ Rd×d of one hidden layer
with a trainable coefficient matrix Λ ∈ Rd×M and the fixed basis matrix B ∈ RM×d. For any frequencies k1 and k2 such
that k1 > k2 > 0, given any ϵ ≥ 0 and fixed i, for j = 1, 2, . . . ,M , there must exist a set of basis matrices such that
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where W(i, j) = wij and Λ(i, j) = λij .

Proof. Before the detailed proof, simply denote: Lλij
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∂wij

.
First, the weight reparameterization for W is expressed as follows:

W = ΛB, (3)

by the matrix multiplication, for any wij ∈ W, the follow equation holds true:
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where B(i, j) = bij . Regarding wi1, . . . , wid as the latent variables related with λij , for all λij ∈ Λ, using the chain rule,
we have the following relationships:

Lλij
(k) =

d∑
t=1

bjtLwit
(k). (5)

Second, given two frequecies k1 > k2 > 0, for the i-th row of Λ, we set that:

τ = argmax
j

{|Lwij (k1)/Lwij (k2)|}. (6)

Further, considering the elements of B, for j = 1, . . . ,M , we make |bjt| < α for t ̸= τ and bjτ = 1. α is a positive upper
bound. Then, according to equation 5, for the fixed i, for j = 1, . . . ,M , we have:
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then by inequalities involving absolute values, we have:
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into the above inequality, for the fixed i and for j = 1, . . . ,M , we have that:
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B. Initialization scheme
Recall that we consider the initialization of the coefficient matrix Λ(n) ∈ Rdn×M . Inspired by Kaiming initialization [2],

the initialization scheme of the i-th row in Λ(n) should satisfy:

V ar(w
(n)
i x) = V ar(λ

(n)
i B(n)x), (14)

where w
(n)
i ∈ R1×dn−1 and λ

(n)
i ∈ R1×M are the i-th row of the weights matrix W(n) ∈ Rdn×dn−1 and the coefficient

matrix Λ(n), respectively; V ar(·) denotes the variance; x ∈ Rdn−1×1 is the input of this layer; B(n) ∈ RM×dn−1 is the fixed
basis matrix. We assume that the elements of W(n),Λ(n) and the bias vector b(n) are statistically independent of each other.
Therefore we can omit the bias vector b(n) on the variance. We assume that the outputs of different neurons in each layer of
the neural network are independent. Then the left-hand side of equation 14 expands as follows:
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where xj is the j-th element of x. We let xj have the same distribution for j = 1, . . . , dn−1 accroding to Kaiming initializa-
tion [2]. Then, the equation 15 can be replaced by

∑dn−1

j=1 V ar(w
(n)
ij x1):

V ar(w
(n)
i x) = V ar(x1

dn−1∑
j=1

w
(n)
ij ). (16)

Similarly, for the right-hand side, we also have that:
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As the following equation holds true [1]:

V ar(XY ) = V ar(X)V ar(Y ) + (E(X))2V ar(Y ) + (E(Y ))2V ar(x), (18)

where X,Y are the independent random variables and E(·) denotes the mathematical expectation.
By this, we further expand equation 14 as follows:
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Note that a sufficient condition to make equation 14 hold true is that V ar(
∑dn−1

t=1

∑M
j=1 λijb

(n)
jt ) = V ar(

∑dn−1

j=1 w
(n)
ij ) and

E(λ
(n)
ij ) = 0. Hence, we let λ(n)

ij ∼ U(−a, a), a > 0 to satisfy that E(λ
(n)
ij ) = 0, which a is a parameter to be determined.

And V ar(λ
(n)
ij ) = a2

3 . Further, from the above variance constraint, we have that:

V ar(

dn−1∑
t=1

M∑
j=1

λ
(n)
ij b

(n)
jt ) =

dn−1∑
t=1

M∑
j=1

b
(n)
jt

2
V ar(λ

(n)
ij ) =

M∑
j=1

dn−1∑
t=1

b
(n)
jt

2
V ar(λ

(n)
ij ) =

M∑
j=1

(

dn−1∑
t=1

b
(n)
jt

2
)V ar(λ

(n)
ij ). (20)

We simply make (
∑dn−1

t=1 b
(n)
jt

2
)V ar(λ

(n)
ij ) =

V ar(
∑dn−1

j=1 w
(n)
ij )

M . We can have that :

V ar(λ
(n)
ij ) =

V ar(
∑dn−1

j=1 w
(n)
ij )

M
∑dn−1

t=1 b
(n)
jt

2 =
a2

3
(21)



F

P

Figure 1. Visualization of the effect from differnet design choices (x-axis for phase number, y-axis for frequency number and colormap for
PSNR value). More experimental details can be found in the Section D.
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The initialization scheme for other activation function can be obtained by the similar deduction. As for the parameters without
reparameterization, the initialization scheme is remained unchanged.

C. Results of image fitting on more metrics
In the main text, we have reported the results of our FR method on MLP+ReLU, MLP+ReLU+PE and MLP+Sin under the
evaluation metric of PSNR. In this section, we adopt more popular evaluation metrics, i.e. SSIM and LPIPS. The evaluation is
conducted directly on the representations from 2D color image approximation. From Table 1, there are average improvements
of 4.5% and 22.7% in SSIM and LPIPS, respectively. These enhancements are notable in image reconstruction.

Table 1. More metrics results in image fitting.

metric MLP+ReLU MLP+ReLU+FR MLP+ReLU+PE MLP+ReLU+PE+FR MLP+Sin MLP+Sin+FR

SSIM↑ 0.6985 0.7276 0.8587 0.9283 0.9747 0.9791
LPIPS↓ 0.68 0.63 0.39 0.23 0.14 0.11

D. Design choices analysis
As discussed in the main text, our FR method has two hyper-parameters: frequency number F and phase number P . In

this section, we provide experimental results to show the effects of different combinations of F and P . We vary the frequency
number F and phase number P from 16 to 128, the approximation accuracy by different design choices can be found in Fig.
1. The approximation accuracy is the average PSNR on the first 3 images of Kodak 24 dataset. Generally, reparameterizing
the weight matrix with more bases will lead to better approximation accuracy. Also, we need to have a balanced number of
frequencies and phases to achieve good results.

E. 2D Color image approximation for more activation functions and input adjustment techniques
In the main text, we evaluated our FR method on MLP+ReLU, MLP+ReLU+PE and MLP+Sin. In this section, we apply

our FR method to more activation functions, i.e. the Tanh, the Gauss [5] and the Garbor wavelet [6] activation functions.
The advanced input adjustment technique, i.e. DINER [8], is also applied with our method. We follow the previous MLP
structures and Fourier basis settings. The same training strategy is adopted for these experiments. For DINER coupled with
Sin activation function, we early stops at 3000 iterations as its fast convergence. In Table 2, we report the PSNR achieved by



Table 2. Peak signal to noise ratio (PSNR) of 2D color image approximation results by different methods. MLP+Gauss denotes the
MLP with Gauss activation function [5]. MLP+CGW denotes the MLP equipped with complex Gabor wavelet activation function [6].
MLP+ReLU+DINER denotes the MLP+ReLU coupled with the adjusted input features by a hash-table [8]. Detailed experiment settings
can be found in Section 5.1 and Appendix E.

Method Kodim 01 Kodim 02 Kodim 03 Kodim 04 Kodim 05 Kodim 06 Kodim 07 Kodim 08 Average

MLP + ReLU 19.37 26.12 25.11 24.57 17.31 21.69 20.79 15.68 21.33
MLP + ReLU + FR 20.34 26.58 27.21 25.72 18.33 22.25 22.47 16.64 22.44

MLP + ReLU + PE 24.47 31.41 31.53 30.16 22.87 26.54 29.33 21.14 27.18
MLP + ReLU + PE + FR 27.64 33.92 34.45 33.23 26.78 29.83 34.13 24.70 30.59

MLP + Sin 31.59 36.55 39.59 36.66 33.05 34.10 39.96 31.00 35.31
MLP + Sin + FR 33.45 38.68 39.58 37.96 34.64 34.45 39.76 32.16 36.34

MLP + Tanh 17.30 22.18 21.05 19.94 15.47 19.96 18.47 15.52 18.74
MLP + Tanh + FR 19.15 24.95 25.36 23.89 17.32 21.46 21.31 16.09 21.19

MLP + Gauss 24.83 30.29 31.32 30.40 24.79 25.78 29.40 22.42 27.40
MLP + Gauss + FR 24.86 30.19 31.40 31.05 24.98 25.53 27.75 24.98 27.59

MLP + CGW 26.53 32.18 32.60 31.97 25.96 28.29 32.19 23.70 29.18
MLP + CGW + FR 28.54 33.56 35.09 33.60 28.12 30.17 34.47 25.68 31.15

MLP + ReLU + DINER 45.65 50.28 37.57 44.01 39.69 42.54 44.50 41.15 43.17
MLP + ReLU + DINER + FR 45.81 50.53 38.06 43.79 40.42 43.13 44.45 41.35 43.44

MLP + Sin + DINER 45.00 50.36 37.84 41.83 40.76 44.50 44.47 41.62 43.30
MLP + Sin + DINER + FR 47.45 50.67 44.74 46.65 40.89 43.85 42.92 43.56 45.09

these three INRs, DINER and previous models for approximating the first 8 images in the Kodak 24 dataset. The same as our
results in the main text, our FR consistently improves the approximation accuracy for all the evaluated activation functions
and input adjustments techniques. Some visual examples of the learned approximations by different models can be found in
the following Fig. 2, 4, 5.

F. Representing shapes for more activation functions and scenes
Following the previous experimental settings and model structures, we further evaluate our FR method with Tanh, Gauss

[5] and complex Gabor wavelet [6] activation functions on the Thai statue and add the Dragon statue. Our FR method helps
models to capture more accurate complex shapes of the statue. In Fig. 6, 7, we visualize the shape representation results by
these methods.

G. Learning neural radiance fields for more scenes
In the task of learning neural radiance fields, We evaluate our FR method on the original NeRF [3] and two recent SOTAs

with neural networks, i.e. the DVGO [4] and the InstantNGP [7]. For the original NeRF, we set F = 128, P = 32. As
for the small two-hidden-layer MLP of the DVGO and the InstantNGP, where the width of the hidden layers is 128 and
64, we reparameterize the weight matrix between consecutive hidden layers and empirically set F = 64, P = 64 and
F = 32, P = 64 to ensure over-complete bases. The same experimental settings and training strategies as the original works
are adopted.

In Table 3, we list the full results of three frameworks on the Blender dataset [3]. Our FR method leads to more accurate
view synthesis results. In Fig. 8, 9, 10, the detail of more reconstruction results is visualized.



Table 3. Peak signal to noise ratio (PSNR) of view synthesis results by different methods on the Blender dataset [3]. NeRF+FR, DVGO+FR
and InstantNGP+FR denote the frameworks of the original NeRF [3], DVGO [4] and InstantNGP [7] trained with FR. NeRF is reproduced
on the “NeRF-pytorch” codebase [9]. Detailed experiment settings can be found in Section 5.3 and Appendix G.

Framework Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

NeRF [3] 32.72 25.06 26.83 36.38 32.55 29.55 32.92 27.95 30.50
NeRF + FR (ours) 32.73 25.12 30.15 36.45 32.59 29.56 33.07 28.30 31.00

DVGO [7] 34.07 25.39 32.66 36.77 34.65 29.59 33.15 29.02 31.91
DVGO + FR (ours) 34.16 25.45 32.89 36.86 34.78 29.73 33.26 29.08 32.03

InstantNGP [4] 35.55 25.85 34.19 37.28 36.04 29.61 36.37 30.51 33.18
InstantNGP + FR (ours) 35.64 25.88 34.23 37.39 36.10 29.63 36.66 30.92 33.31

MLP+ReLU (19.37dB) MLP+ReLU+FR (20.08dB) MLP+ReLU+PE (24.47dB) MLP+ReLU+PE+FR (27.64dB)

MLP+Sin (31.59dB) MLP+Sin+FR (33.45dB) MLP+Tanh (17.30dB) MLP+Tanh+FR (19.15dB)

MLP+Gauss (24.83dB) MLP+Gauss+FR (24.86dB) MLP+CGW (26.53dB) MLP+CGW+FR (28.54dB)

MLP+ReLU+DINER (45.65dB) MLP+ReLU+DINER+FR (45.81dB) MLP+Sin+DINER (45.00dB) MLP+Sin+DINER+FR (47.45dB)

Figure 2. Peak signal to noise ratio (PSNR) of 2D color image approximation results on Kodim 01. MLP+Gauss denotes the MLP
with Gauss activation function [5]. MLP+CGW denotes the MLP equipped with complex Gabor wavelet activation function [6].
MLP+ReLU+DINER denotes the MLP+ReLU coupled with the adjusted input features by a hash-table [8]. Detailed experiment set-
tings can be found in Section 5.1 and Appendix E.



MLP+Tanh (22.18dB) MLP+Tanh+FR (24.95dB)

MLP+Gauss (30.29dB) MLP+Gauss+FR (30.19dB) MLP+CGW (32.18dB) MLP+CGW+FR (33.56dB)

MLP+Sin (36.55dB) MLP+Sin+FR (38.69dB)

MLP+ReLU (26.12dB) MLP+ReLU+FR (26.58dB) MLP+ReLU+PE (31.41dB) MLP+ReLU+PE+FR (33.92dB)

MLP+ReLU+DINER (50.28dB) MLP+ReLU+DINER+FR (50.53dB) MLP+Sin+DINER (50.36dB) MLP+Sin+DINER+FR (50.67dB)

Figure 3. Peak signal to noise ratio (PSNR) of 2D color image approximation results on Kodim 02. MLP+Gauss denotes the MLP
with Gauss activation function [5]. MLP+CGW denotes the MLP equipped with complex Gabor wavelet activation function [6].
MLP+ReLU+DINER denotes the MLP+ReLU coupled with the adjusted input features by a hash-table [8]. Detailed experiment set-
tings can be found in Section 5.1 and Appendix E.



MLP+ReLU (24.57dB) MLP+ReLU+FR (25.72dB) MLP+ReLU+PE (30.16dB) MLP+ReLU+PE+FR (33.24dB) MLP+Sin (36.66dB) MLP+Sin+FR (37.97dB)

MLP+Tanh (19.94dB) MLP+Tanh+FR (23.89dB) MLP+Gauss (30.40dB) MLP+Gauss+FR (31.05dB) MLP+CGW (31.97dB) MLP+CGW+FR (33.60dB)

MLP+ReLU+DINER  
(50.28dB)

MLP+ReLU+DINER+FR  
(50.53dB)

MLP+Sin+DINER  
(50.36dB)

MLP+Sin+DINER+FR  
(50.67dB)

Figure 4. Peak signal to noise ratio (PSNR) of 2D color image approximation results on Kodim 04. MLP+Gauss denotes the MLP
with Gauss activation function [5]. MLP+CGW denotes the MLP equipped with complex Gabor wavelet activation function [6].
MLP+ReLU+DINER denotes the MLP+ReLU coupled with the adjusted input features by a hash-table [8]. Detailed experiment set-
tings can be found in Section 5.1 and Appendix E.



MLP+Tanh (15.52dB) MLP+Tanh+FR (16.09dB)

MLP+Gauss (22.42dB) MLP+Gauss+FR (24.98dB) MLP+CGW (23.70dB) MLP+CGW+FR (25.68dB)

MLP+Sin (31.00dB) MLP+Sin+FR (32.17dB)

MLP+ReLU (15.67dB) MLP+ReLU+FR (16.64dB) MLP+ReLU+PE (21.14dB) MLP+ReLU+PE+FR (24.71dB)

MLP+ReLU+DINER (41.15dB) MLP+ReLU+DINER+FR (41.35dB) MLP+Sin+DINER (41.62dB) MLP+Sin+DINER+FR (43.56dB)

Figure 5. Peak signal to noise ratio (PSNR) of 2D color image approximation results on Kodim 08. MLP+Gauss denotes the MLP
with Gauss activation function [5]. MLP+CGW denotes the MLP equipped with complex Gabor wavelet activation function [6].
MLP+ReLU+DINER denotes the MLP+ReLU coupled with the adjusted input features by a hash-table [8]. Detailed experiment set-
tings can be found in Section 5.1 and Appendix E.



Figure 6. Visualization examples of the shape representation results (IOU) by different methods on Thai statue. Detailed experiment
settings can be found in Section F.

Figure 7. Visualization examples of the shape representation results (IOU) by different methods on Dragon Statue. Detailed experiment
settings can be found in Section F.



NeRF (36.38dB) NeRF+FR (36.45dB)

DVGO (36.77dB) DVGO+FR (36.86dB)

InstantNGP (37.28dB) InstantNGP+FR (37.39dB)

Figure 8. Visualization examples of the view synthesis results (PSNR) of “Hotdog” by learning neural radiance fields. Detailed experiment
settings can be found in Section G.



NeRF (32.92dB) NeRF+FR (33.07dB)

DVGO (33.15dB) DVGO+FR (33.26dB)

InstantNGP (36.37dB) InstantNGP+FR (36.66dB)

Figure 9. Visualization examples of the view synthesis results (PSNR) of “Mic” by learning neural radiance fields. Detailed experiment
settings can be found in Section G.



NeRF (27.95dB) NeRF+FR (28.30dB)

DVGO (29.02dB) DVGO+FR (29.08dB)

InstantNGP (30.51dB) InstantNGP+FR (30.92dB)

Figure 10. Visualization examples of the view synthesis results (PSNR) of “Ship” by learning neural radiance fields. Detailed experiment
settings can be found in Section G.
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