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We provide more details in this supplementary docu-
ment, including load balancing loss (Sec. 7), inference strat-
egy (Sec. 8), implementation details (Sec. 9), dataset details
(Sec. 10) and more Results (Sec. 11).

7. Load Balancing Loss
To maximize utilization of the optimized feature space and
avert quantization collapse, we introduce a load balancing
loss, inspired by Switch Transformer [13]. When quantiz-
ing K features, the utilization ratio of each feature in S is
calculated as:

mi = argmaxj(D(Fi, fj)), where fj ∈ S, (16)

r =

∑K
i onehot(mi)

K
, (17)

where r ∈ RN . We compute the mean selection probability
for each feature over K quantizations:

D(Fi,S) = [D(Fi, f1),D(Fi, f2), . . . ,D(Fi, fN )], (18)

p =

∑K
i Softmax(D(Fi,S))

K
, (19)

where D(Fi,S) ∈ RN and p ∈ RN . The load balancing
loss is then computed by the element-wise multiplication of
r and p, followed by their aggregation:

Llb =

N∑
(r ◦ p), (20)

where ◦ denotes the element-wise product.

8. Inference Strategy
In the inference stage, rasterization and alpha blending are
employed to project the compact semantic features of 3D
Gaussians into a 2D feature map. This feature map is then
converted into the distribution of semantic indices using a
trained MLP decoder and softmax activation, expressed as:

Minfer = Softmax(D(Rs(G; pcam))), (21)

where Rs(G; pcam) ∈ RH×W×ds denotes the rendered se-
mantic features from a set of 3D Gaussians G, as ob-
served from the camera pose pcam. Here, D symbolizes
the trained MLP decoder of semantic features on 3D Gaus-
sians. The result is a language feature index distribution
Minfer ∈ RH×W×N , where H and W represent the im-
age’s height and width, respectively. We finally acquire the
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Figure 7. The inference pipeline for language feature maps from
optimized 3D Gaussians. Each element in the distribution map
Minfer represents a probability distribution of features in the Dis-
crete Feature Space S. We compute the corresponding language
feature map F based on S utilizing these distributions.

Layer Config Out Size

Input - - 8×H ×W
C1 Conv+ReLU 128× 1× 1 / 1 128×H ×W
C2 Conv+ReLU 256× 1× 1 / 1 256×H ×W
C3 Conv N × 1× 1 / 1 N ×H ×W

Table 3. Details of our semantic feature decoder D. In a layer
characterized by c× w × w/s, c represents the number of filters,
w × w indicates the filter size, and s denotes the stride size. The
output dimensionality is expressed in terms of channel × height
× width. The dimension of semantic feature on 3D Gaussians is 8
and N represents the size of discrete language feature space S.

language feature map, by multiplying Minfer with the quan-
tized language features matrix S ∈ RN×d:

F = MinferS, (22)

where F ∈ RH×W×d denotes the language feature map de-
rived from the 3D Gaussians G observed from the camera
pose pcam. Figure 7 depicts the inference pipeline for gener-
ating language feature maps from language-embedded 3D
Gaussians.

Utilizing the provided text prompt, we identify objects
within the 3D scene by computing the relevance map of F
in accordance with LERF [21].



Layer Config Out Size

PE Positional Encoding 0 3
F1 Full-connected+ReLU 128 128
F2 Full-connected+ReLU 128 128
F3 Full-connected+ReLU 128 128
F4 Full-connected 8 8

Table 4. Details of the PE and MLP in the adaptive spatial smooth-
ing. The input is the position of 3D Gaussian and the output is
smoothed semantic feature sMLP. The configure of PE layer repre-
sents the frequency of positional encoding.

9. Implementation Details
In Tab. 3 and Tab. 4, we present the implementation details
of the semantic feature decoder D and the PE and MLP in
the adaptive spatial smoothing, respectively. Furthermore,
for the size N of the discrete language feature space S,
we set N = 32 for the ”kitchen” scene, N = 64 for the
”bonsai” scene, and N = 128 for other scenes. N , as a
hyperparameter, controls the capacity of semantic informa-
tion in the discrete language feature space S and can be
adjusted according to the richness of semantic information
in the scene.

To justify the performance increment, we elaborate the
metrics in Tab. 1. Memory cost includes host and de-
vice memory usage for optimization programs, including
3D Gaussians, discrete feature maps and two MLPs in our
method. Disk cost relates to language features, involving
discrete feature space, maps and MLPs. Quantization re-
duces language feature cost, minimizing overall memory
and disk expenses. Training time for all methods involves
MLPs or 3D Gaussian optimization with language embed-
ding. FPS measures rendering time only, while querying
time remains the same across methods.

10. Datasets
To concurrently assess the quality of visual and semantic
embeddings, six scenes from the Mip-NeRF360 dataset [3]
are chosen for quantitative and qualitative evaluation. The
‘Stump’ scene is excluded due to its insufficient semantic
content. The evaluation set of each scene is manually anno-
tated with segmentation maps, which are created for the pri-
mary objects in each scene. The text prompts corresponding
to these annotated objects are listed in Tab. 6. Additionally,
segmentation masks for some objects in our dataset are il-
lustrated in Fig. 8.

Although 13 scenes are included in the LeRF [21]
dataset, quantitative evaluations are only carried out on five
of them (waldo kitchen, bouquet, ramen, teatime, and fig-
urines) in LeRF. We conduct an additional experiment in
line with LeRF on those scenes for quantitative evaluation

PSNR↑ mPA↑ mP↑ mIoU↑ mAP↑ LA ↑

LeRF

bouquet 21.374 0.832 0.298 0.282 0.595 0.500
figurines 19.641 0.933 0.370 0.328 0.721 0.866
kitchen 18.740 0.717 0.259 0.231 0.592 0.676
ramen 21.793 0.569 0.193 0.182 0.508 0.552
teatime 21.196 0.785 0.288 0.282 0.662 0.683

Overall 20.549 0.768 0.282 0.262 0.582 0.618

Ours

bouquet 23.175 0.911 0.555 0.396 0.628 0.673
figurines 21.939 0.950 0.517 0.317 0.567 0.767
kitchen 23.205 0.868 0.441 0.251 0.541 0.523
ramen 24.804 0.923 0.434 0.385 0.736 0.737
teatime 25.522 0.889 0.504 0.309 0.621 0.683

Overall 23.812 0.909 0.490 0.332 0.619 0.677

Table 5. Quantitative comparisons of LeRF and ours on the LeRF
dataset. LA is the localization accuracy in LeRF.

against LeRF. Note that the original LeRF annotations for
object localization are simply rectangular boxes, which may
lead to performance saturation and are insufficient for com-
plex metrics, hence the ground truth segmentation masks
are manually labeled based on the text labels from the LeRF
dataset.

11. More Results
Further qualitative results on the Mip-NeRF360 dataset [3]
are presented to illustrate the comparison of visual quality
(Fig. 10), the evaluation of novel view synthesis and query
accuracy (Fig. 9), and the exploration of open-vocabulary
queries (Fig. 11). The quantitative evaluations on the LeRF
dataset [21] demonstrate the superiority of our method over
the LeRF. Full results are presented in the Tab. 5.



Scene Positive Words

bicycle green grass, white bicycle, tire, bench, asphalt ground, silver oak tree

bonsai piano keyboard, bicycle, purple table cloth, black stool, plastic bonsai tree, dark grey patterned carpet

counter
jar of coconut oil, fruit oranges, onions, plants, blue oven gloves, wood rolling pin,

free range eggs box, stable bread, garofalo pasta, napolina tomatoes, gold ripple baking pan

garden football, wood round table, green grass, wood pot, elderflower, green plant, bricks wall, windows, stone ground

kitchen LEGO Technic 856 Bulldozer, basket weave cloth, wood plat, old pink striped cloth, red oven gloves

room
blue grey chair, curtain, brown shoes, books, windows, door,

piano keyboard, wood floor, wine glasses and bottles, yucca plant, deep green carpets

Table 6. Text prompts used for evaluating quality and accuracy of open-vocabulary query.

“red oven gloves” “LEGO” “old pink cloth”“basket weave cloth”

“football” “green plant” “wood pot”“green grass”

“brown shoes” “curtain”Original Image “wood floor”“glasses and bottles”

Original Image

Original Image

“fruit oranges” “jar of coconut oil”Original Image “blue oven gloves”“onions”

“purple table cloth” “piano keyboard”Original Image “plastic bonsai tree”“bicycle”

“bench” “asphalt ground”Original Image “green grass”“white bicycle”

Figure 8. Ground truth segmentation masks for some objects in our dataset. In each scene, we select primary, unambiguous objects for
semantic annotation. This includes both large and small objects, as well as challenging entities with complex geometric structures or
transparent and translucent properties, such as bicycles, windows, and water glasses.



Ours LERFGround Truth 3DOVSDFF

Figure 9. Comparison of novel view synthesis quality and open-vocabulary query accuracy. Left to right: Ground truth novel view
synthesis, novel view images with relevance visualization from our method, DFF [22], LeRF [21], and 3DOVS [26]. Top to bottom: Query
words “white bicycle”, “bonsai”, “plants”, “green plant”, “LEGO Technic 856 Bulldozer”, and “blue grey chair”.
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Figure 10. Comparison of the quality of novel view synthesis. Even with dense language features embedded into the 3D Gaussians, our
method still only requires a reasonable amount of memory, thus allowing a massive amount of points to be rendered and optimized at the
same time, achieving the best visual quality with more details compared to other methods.

“bicycle” “white” “yellow”“cab”

“fusilli”“spaghetti” “plastic”“Bonsai”

“fragrant”“elderflower” “playing”“piano keyboard”

Figure 11. Examples of various open-vocabulary queries. Our approach enables accurate open-vocabulary queries using a diverse class of
word types, including but not limited to, visual attributes, general terms, materials, olfactory properties, and related actions.
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