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Abstract

In this supplementary material, we provide additional
materials in the following aspects: 1) solution of the
Temporally-smooth Procrustean Alignment (TPA) model
and verification of its validity; 2) detailed solution of the
ADMM model; 3) additional explanations for spatially-
variant deformation modeling; and 4) additional details of
the experimental setup, supplementation of missing data ex-
periments, and more visualization results.

1. Temporally-smooth Procrustean Alignment

In this section, we first provide details in solving our pro-
posed Temporally-smooth Procrustean Alignment (TPA)
module and then report additional experimental results.

1.1. Algorithm for TPA

Denote the 3D shape sequence to be aligned as {Si}Fi=1, we
set the optimization target of TPA as:

LQ
tpa =

1

2

F−1∑
i=1

∥QiSi −Qi+1Si+1∥2F , (1)

where we initialize Qi = I3, and I3 ∈ R3×3 denotes the
identity matrix. We solve this optimization problem in a
frame-by-frame manner. When 1 < i < F , we transfer the
optimization target as:

LQi

tpa =
1

2

i∑
k=i−1

P∑
j=1

∥Qksk,j −Qk+1sk+1,j∥22

=
1

2

P∑
j=1

(∥Qi−1si−1,j −Qisi,j∥22

+ ∥Qisi,j −Qi+1si+1,j∥22), (2)

where si,j is the j-th column of 3D shape Si. Taking the
Lie algebra ϕi corresponding to the rotation matrix Qi as
the optimization variable, the gradient of model (1) can be
calculated as:

gi =
∂LQi

tpa

∂ϕi
=

∂ 1
2

∑P
j=1 (

∥∥∥r(1)i,j

∥∥∥2
2
+
∥∥∥r(0)i,j

∥∥∥2
2
)

∂ϕi
(3)

=

P∑
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[
(
∂r

(1)
i,j

∂ϕi
)T r

(1)
i,j + (

∂r
(0)
i,j

∂ϕi
)T r

(0)
i,j

]

=

P∑
j=1

[
(Qisi,j)

∧]T (
r
(1)
i,j − r

(0)
i,j

)
,

where r(m)
i,j =Qi−msi−m,j−Qi−m+1si−m+1,j is the resid-

ual vector, and (Qisi,j)
∧ is an approximation to the deriva-

tive of the residual r(m)
i,j with respect to the Lie algebra ϕi.

(a)
∧ is the skew-symmetric matrix of vector a, i.e.:a1a2

a3

∧

=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (4)

Similarly, when i = 1 or F , the gradient gi can be calcu-
lated as:

gi =

{
−
∑P

j=1

[
(Qisi,j)

∧]T
r
(0)
i,j , i = 1,∑P

j=1

[
(Qisi,j)

∧]T
r
(1)
i,j , i = F.

(5)

The gradient gi can be expressed as the product of the Jaco-
bian matrix and the residual, i.e., gi = JT

i ri. Ji ∈ R3P×3

is the Jacobian matrix as follows:

Ji =
[
(Qisi,1)

∧ · · · (Qisi,P )
∧]T

, (6)

where ri is the column vector stacked from residuals {r(1)i,j −
r
(0)
i,j }Pj=1 or {r(m)

i,j }Pj=1. After obtaining the Jacobian ma-
trix, we can compute the approximation of the second-order
Hessian matrix as Hi = JT

i Ji and use numerical optimiza-
tion methods such as the Levenberg-Marquardt (LM) algo-
rithm [12] to solve for the rotation matrix Q = diag(Qi).

1.2. Experiments for TPA

In this subsection, we verify the effectiveness of the TPA
module. Let’s revisit the setting of the experiments. We
randomly sample Lie algebra pn ∈ R3×F from Gaussian
distribution N (0, 0.1), and then map it to a block diagonal
matrix Rd ∈ R3F×3F consisting of 3D rotations using the
Rodrigues’ rotation formula. We define the shape sequence
disrupted by random rotations as Snoise = RdSgt, where
Sgt ∈ R3F×P is the GT sequence in the world coordinate.
We realign the sequence using the TPA and GPA [10] mod-
ules and compare their results. We performed these experi-
ments on the Pickup, Yoga, Stretch, and Drink sequences in
MoCap benchmark and the results are shown in Fig. 1.
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Figure 1. Experiments for testing the alignment capability of TPA module. (a) Visualization of the shape sequences Snoise. (b) Visu-
alization of the TPA-aligned shape sequences. (c) Visualization of the GPA-aligned shape sequences. (d) The low-rank and smoothing
properties of GT non-rigid sequences Sgt, randomly rotated disrupted sequences Snoise, and sequences aligned by TPA or GPA.



We centralized all the 3D shapes in the sequence and
plotted them in the same coordinate. Column (a) in Fig. 1 is
the disrupted sequence Snoise. Columns (b) and (c) are se-
quences after TPA or GPA alignment, respectively. Column
(d) shows the low-rank and smoothing properties of real
sequences Sgt, noisy sequences Snoise, TPA-aligned se-
quences, and GPA-aligned sequences. Fig. 1 demonstrates
that the TPA module can efficiently align the 3D shape se-
quences. Compared with GPA, the TPA-aligned sequences
are more similar to the real 3D shape sequences in terms of
their low-rank and smoothing properties.

Non-rigid deformation mixed with rigid motion cannot
be accurately estimated using the low-rank constraint. As
manifested in Fig. 1 (d), shape sequences after alignment
by the TPA module have lower nuclear norm and smooth-
ness. From one hand, this demonstrates that the TPA mod-
ule can effectively separate rigid motion from non-rigid de-
formation. From the other hand, the properties of the TPA-
aligned sequence make it can be better recovered by the
low-rank and smoothing constraints. In summary, we utilize
the low-rank constraint to recover the TPA-aligned shape
sequence, rather than directly applying the low-rank con-
straint under the coordinate defined by the estimated camera
motion [3, 8, 9].

2. ADMM Model Solution
2.1. Model without Occlusion

In this section, we provide the completed solution of our
proposed method. Let’s first recall the Lagrangian model to
be solved:
min
Ω

L =
µ1

2
∥W−ΠS∥2F + µ2

∥∥∥S̆♯
∥∥∥
∗
+

µ3

2

F−1∑
i=1

∥∥∥QiS̃i−Qi+1S̃i+1

∥∥∥2
F

+
β

2

∥∥∥S̆♯ − g(ŜΛ)
∥∥∥2
F
+
〈
Y1, S̆

♯ − g(ŜΛ)
〉

+
β

2

∥∥∥Ŝ−QS̃
∥∥∥2
F
+
〈
Y2, Ŝ−QS̃

〉
+

β

2

∥∥∥S̃−RpS
∥∥∥2
F
+
〈
Y3, S̃−RpS

〉
,

(7)
where Ω = {S, S̃, Ŝ, S̆♯,Q} denotes the variables to be up-
dated, {Yn}3n=1 are the Lagrange multipliers. We then give
the update formula for each optimization variable in Ω.
Solution for S̆♯. Selecting all the optimization terms in
model (7) that are related to S̆♯, the optimization model for
S̆♯ is obtained as:

S̆♯ = argmin
S̆♯

µ2

∥∥∥S̆♯
∥∥∥
∗
+

β

2

∥∥∥S̆♯ − g(ŜΛ)
∥∥∥2
F

+
〈
Y1, S̆

♯ − g(ŜΛ)
〉

= argmin
S̆♯

β

2

∥∥∥∥S̆♯ −
(
g(ŜΛ)− 1

β
Y1

)∥∥∥∥2
F

+ µ2

∥∥∥S̆♯
∥∥∥
∗
.

(8)
We use the method in [8] to obtain the closed-form solu-
tion. We first define the soft-thresholding function Sτ (σ) =

sign(σ)max(|σ| − τ, 0). Then the closed-form solution S̆♯

can be given by:

S̆♯ = USΘµ2
β

(Σ)VT ,

U,Σ,V = SVD
(
g(ŜΛ)− 1

β
Y1

)
,

(9)

where Θ is the weight set for different singular values. The
larger the singular value tends to be the more significant,
and it should correspond to a smaller weight. The weight Θ
in [8] is set as:

Θj =
ξ

σj(X) + γ
, (10)

where σj(X) is the singular value of X, ξ is a positive num-
ber and γ = 1e−6. Here we use the relative magnitude of
the singular values to adjust the weight setting, i.e.:

Θ̃j =


ξ ·Θj∑Ks

i=1 Θi

, 1 ≤ j ≤ Ks,

0, Ks < j.

(11)

We set the shape basis dimension Ks according to the as-
sumption of linear basis combination and truncate the sin-
gular values. We can better measure the importance of dif-
ferent singular values by adjusting the weights through nor-
malization.
Solution for Ŝ. The solution model for the optimization
variable Ŝ can be expressed as follows:

Ŝ = argmin
Ŝ

β

2

∥∥∥S̆♯ − g(ŜΛ)
∥∥∥2
F
+

〈
Y1, S̆

♯ − g(ŜΛ)
〉

+
β

2

∥∥∥Ŝ−QS̃
∥∥∥2
F
+

〈
Y2, Ŝ−QS̃

〉
,

(12)
where g(·) is an invertible linear operator, so we can rewrite
the above equation in a more easily solvable form as:

Ŝ = argmin
Ŝ

β

2

∥∥∥Ŝ−QS̃
∥∥∥2
F
+

〈
Y2, Ŝ−QS̃

〉
+

β

2

∥∥∥g−1(S̆♯)− ŜΛ
∥∥∥2
F
+
〈
g−1(Y1), g

−1(S̆♯)− ŜΛ
〉
.

(13)
The closed-form solution of Ŝ can be computed by taking
the derivative of the model (13) and equating it to zero:

Ŝ(IP +ΛΛT ) =

QS̃− 1

β
Y2 + g−1(S̆♯)ΛT +

1

β
g−1(Y1)Λ

T .
(14)

Solution for S̃. First, we define the first-order smoothing
matrix H ∈ R3F×3F as in [3]:

Hi,j =


1, j = i, i = 1, ..., 3(F − 1),

− 1, j = i+ 3, i = 1, ..., 3(F − 1),

0, Otherwise.

(15)



Algorithm 1 ADMM Optimization Algorithm

1: Input: Initialize S, S̃, Ŝ, S̆♯,Rp,Q,Λ, β, βmax, λ and
ϵ = 1e−6

2: repeat
3: Update S̆♯ by Eq. (9) yields S̆ ♯

4: Update Ŝ by Eq. (14) yields Ŝ
5: Update S̃ by Eq. (18) yields S̃
6: Update S by Eq. (20) yields S
7: repeat
8: Calculate the gradient by Eq. (22) and update Q

by LM algorithm yields Q
9: until Convergence

10: Update Y1 by Y1 + β
(
S̆ ♯ − g(Ŝ Λ)

)
11: Update Y2 by Y2 + β

(
Ŝ −Q S̃

)
12: Update Y3 by Y3 + β

(
S̃ −RpS

)
13: Update β as min(βmax, λβ)
14: until ∥S − S∥∞ < ϵ
Output: S,Q

By introducing the matrix H, we can denote the TPA mod-
ule equivalently as:

F−1∑
i=1

∥∥∥QiS̃i −Qi+1S̃i+1

∥∥∥2
F
=

∥∥∥HQS̃
∥∥∥2
F
. (16)

Then the optimization model for the variable S̃ can be ex-
pressed as follows:

S̃ = argmin
S̃

µ3

2

∥∥∥HQS̃
∥∥∥2
F

+
β

2

∥∥∥Ŝ−QS̃
∥∥∥2
F
+
〈
Y2, Ŝ−QS̃

〉
+

β

2

∥∥∥S̃−RpS
∥∥∥2
F
+
〈
Y3, S̃−RpS

〉
.

(17)

Calculating the derivative of model (17) and equating it to
zero yields the closed-form solution of S̃ as follows:

(
µ3

β
QTHTHQ+ 2I3F )S̃ =

QT Ŝ+
1

β
QTY2 +RpS− 1

β
Y3.

(18)

Solution for S. The optimization model for the variable S
can be expressed as follows:

S = argmin
S

µ1

2
∥W −ΠS∥2F

+
β

2

∥∥∥S̃−RpS
∥∥∥2
F
+
〈
Y3, S̃−RpS

〉
.

(19)

Calculating the derivative of model (19) and equating it to

zero yields the closed-form solution of S as follows:

(
µ1

β
ΠTΠ+ I3F )S =

µ1

β
ΠTW +RT

p S̃+
1

β
RT

p Y3.
(20)

Solution for Q. We have already discussed how to solve the
TPA module in Sec. 1.1. But in model (7), the variables in
Ω are coupled and need to be optimized alternatively, so the
updating formula for Q needs adjustments. The optimiza-
tion terms in model (7) containing the optimization variable
Qi, i = 1, · · · , F are:

Qi = argmin
Qi

µ3

2

F−1∑
i=1

∥∥∥QiS̃i −Qi+1S̃i+1

∥∥∥2
F

+
β

2

∥∥∥Ŝ−QS̃
∥∥∥2
F
+
〈
Y2, Ŝ−QS̃

〉
= argmin

Qi

µ3

2

i∑
k=i−1

P∑
j=1

∥Qks̃k,j −Qk+1s̃k+1,j∥22

+
β

2

P∑
j=1

(∥ŝi,j −Qis̃i,j∥22 +
〈
Yi

2,j , ŝi,j −Qis̃i,j
〉
),

(21)
where Yi

2,j is the rows 3i − 2 through 3i and j-th column
of Y2. We denote ŝi,j − Qis̃i,j as r̂i,j and compute the
gradient of the Lie algebra ϕi corresponding to Qi by imi-
tating Eq. (3):

ĝi =
∂ µ3

2

∑P
j=1 (

∥∥∥r(1)i,j

∥∥∥2
2
+

∥∥∥r(0)i,j

∥∥∥2
2
)

∂ϕi

+
∂
∑P

j=1 (
β
2 ∥r̂i,j∥22 +

〈
Yi

2,j , r̂i,j
〉
)

∂ϕi

= µ3

P∑
j=1

[
(
∂r

(1)
i,j

∂ϕi
)T r

(1)
i,j + (

∂r
(0)
i,j

∂ϕi
)T r

(0)
i,j

]

+

P∑
j=1

[
β(

∂r̂i,j
∂ϕi

)T r̂i,j + (
∂r̂i,j
∂ϕi

)TYi
2,j

]

=

P∑
j=1

[
(Qis̃i,j)

∧]T [
µ3

(
r
(1)
i,j − r

(0)
i,j

)
+ βr̂i,j +Yi

2,j

]
.

(22)
Therefore, we can still update Qi using the TPA optimiza-
tion algorithm in Sec. 1.1, and only need to adjust the resid-
ual vector ri to satisfy the descent direction.

After discussing the solution formulas for each variable,
we give the complete optimization Algorithm 1. Since no
closed-form solution for updating Q exists, another iterative
optimization must be embedded in the ADMM algorithm.
In experiments, we found that only 1 to 10 iterations are
needed to update Q well.
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Figure 2. Visualization of the 3D shapes in the H3WB NRSfM dataset. The first row shows the pictures in the original H36M dataset, and
the other rows display the GT 3D shapes in each sequence.

2.2. Model with Occlusion

In real-world scenes, the captured images are often ob-
scured and it is difficult to observe all the keypoints in each
frame. Assume oi ∈ R1×P , i = 1,· · ·, F is the mask vec-
tors and oi,j = 1 if j-th point in the i-th frame is visible,
otherwise 0. Then to solve the occlusion problem, we intro-
duce the mask matrix O∈R2F×P and correct the data term
constraint F(·) as follows:

µ1

2
∥O⊙ (W −ΠS)∥2F , (23)

where O = [12 ⊗ o1; · · · ;12 ⊗ oF ] ∈ R2F×P . Since the
occlusion is different for each frame, centralization for the
observation matrix W does not guarantee that the transla-
tion between shapes is eliminated. Therefore re-centering
of the shapes is required before alignment using the TPA
module, which only requires modification of S̃:

S̃i = RpiSiT, i = 1, · · · , F, (24)

where the definition of T = I − 1
P 11T is translation re-

moval matrix. The completed model after adding occlusion
is as follows:



min
S,Q

µ1

2
∥O⊙ (W −ΠS)∥2F + µ2

∥∥∥S̆♯
∥∥∥
∗
+

µ3

2

F−1∑
i=1

∥∥∥QiS̃i −Qi+1S̃i+1

∥∥∥2

F

s.t.


S̆♯ = g(ŜΛ)

Ŝi = QiS̃i, i = 1, · · · , F
S̃i = RpiSiT, i = 1, · · · , F

(25)

The update formulas for variables Ω can be obtained by im-
itating the above solution procedure. Since the improve-
ment of the model is only related to the optimization vari-
able S̃,S, we only need to adjust their update formulas.
Solution for S̃ under occlusion. S in model (25) needs to
be centralized and then transformed by rotation Rpi to get
S̃. Thus we only need to replace S in Eq. (18) with ST, i.e.:

(
µ3

β
QTHTHQ+ 2I3F )S̃ =

QT Ŝ+
1

β
QTY2 +RpST− 1

β
Y3.

(26)

Solution for S under occlusion. We solve the 3D shape Si

frame-by-frame and the optimization model is as follows:

Si = argmin
Si

µ1

2
∥Oi ⊙ (Wi −ΠiSi)∥2F

+
β

2

∥∥∥S̃i −RpiSiT
∥∥∥2
F
+
〈
Yi

3, S̃i −RpiSiT
〉
,

(27)

where Oi = 12 ⊗ oi. We define Mi = diag(oi) ∈ RP×P ,
then model (27) can be rewritten as:

Si = argmin
Si

µ1

2
∥(Wi −ΠiSi)Mi∥2F

+
β

2

∥∥∥S̃i −RpiSiT
∥∥∥2
F
+
〈
Yi

3, S̃i −RpiSiT
〉
.

(28)

Calculating the derivative of model (28) and equating it to
zero yields the solution of Si as follows:

µ1

β
ΠT

i ΠiSiM
2
i + SiT

2 =

µ1

β
ΠT

i WiM
2
i +RT

piS̃iT+
1

β
RT

piY
i
3T.

(29)

In order to calculate the closed-form solution of Si, we use
the property vec(AXB) = (BT ⊗ A)vec(X) to equiva-
lently represent Eq. (29) as:[

µ1

β
(M2

i ⊗ΠT
i Πi) + (T2 ⊗ I3)

]
vec(Si) =

vec

(
µ1

β
ΠT

i WiM
2
i +RT

piS̃iT+
1

β
RT

piY
i
3T

)
.

(30)

The update formulas for the other optimization variables in
Model (25) remain unchanged.
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Figure 3. Illustration of the proxy shape construction and shape
update principle.

3. Supplement to Spatially-variant Modeling
In this section, We provide an additional explanation of the
construction of the proxy shape and how it plays a role in
optimization, refer to Fig. 3.
1) Definition of proxy shape. We divide the non-rigid
object into two regions with different deformation degrees
through frequency domain analysis of 3D trajectories. Then
by spatial weighting, we merge the single super point
degenerated from “Non-Rigid” part with “Nearly Rigid”
points to form the proxy shapes, i.e., S̆= ŜΛ. The weight
matrix Λ defined by the feature mapping ϕ(·) (Eq. (12) in
them main text) is rank-deficient (when αr < 1), so the re-
sultant proxy sequence S̆ has fewer degrees of freedom than
Ŝ and more satisfies the low-rank constraint.
2) How SWNN works. We enforce the low-rank constraint
on proxy shapes and update new shapes by Eq. (14). The
new Ŝ is mainly composed of S̆ after low-rank regulariza-
tion and S̃ after smoothing regularization. Since Λ is rank-
deficient, the low-rank constrained S̆ after inverse transfor-
mation only retains the structural information of nearly rigid
part. Therefore, Ŝ updates nearly rigid part mainly through
low-rank, and non-rigid part is fine-tuned by S̃.

Our method combines low-rank and smoothing con-
straints through spatial weighting, which improves the
accuracy of the reconstruction by avoiding the over-
penalization of localized drastic deformations with low-
rank constraint. To verify the validity of the combination,
we designed the comparison experiment presented in Fig. 4.
We compare the reconstruction error of Eq. (7) with meth-
ods using only low-rank or smoothing constraints on the
NRSfM Challenge dataset. For the low-rank-only method,
we compared with R-BMM [8], which is an improvement
on the “prior-free” classical method BMM [3]. For the ap-
proach using only the smooth prior, we removed the low-
rank constraint term from Eq. (7) and compared with it, i.e.:

min
S̃,S,Q

L =
µ1

2
∥W−ΠS∥2F +

µ2

2

F−1∑
i=1

∥∥∥QiS̃i−Qi+1S̃i+1

∥∥∥2
F

+
β

2

∥∥∥S̃−RpS
∥∥∥2
F
+
〈
Y1, S̃−RpS

〉
.

(31)



Figure 4. Comparison of the reconstruction errors of our model
with methods using only low-rank or smoothing constraints on the
NRSfM Challenge dataset.

As shown in Fig. 4, the reconstruction error of our method
is lower than that of the low-rank-only/smooth-only method
on all types of deformation, and there is a significant im-
provement on Articul., Balloon and Tearing.

Our approach can effectively couple low-rank and
smoothing constraints to improve the stability of the algo-
rithm over different types of deformations. Moreover, sta-
tistical prior methods tend to be sensitive to the statistical
properties of the data, which are also related to the com-
plexity of the corresponding object deformation. In other
words, it is not enough to only mine the smooth prior to
complement the low-rank constraints, so finding constraints
that are more general and insensitive to the statistical prop-
erties of the data is a feasible direction for improvement.

4. Additional Experiments
In this section, we first add the details of dataset processing
and algorithm implementation and then report additional
experiment results.

4.1. Implementation Details

For parameters in ADMM Algorithm 1, we refer to [9] to
initialize β=1e−4, βmax=1e10, Λ=1.1 and set {Yn}3n=1

to zero matrices. The weights µ1, µ2, µ3 of the optimization
objective (7) are set to 1, 0.1, 0.1 by default. We can adjust
the sizes of µ2, µ3 according to the shape sequences’ low-
rank and smoothing properties. In addition, we found if
the shape sequence does not satisfy the low-rank property
well, increasing the weight µ1 of the reprojection term can
effectively improve the reconstruction results, e.g., µ1=1e1

generally on the NRSfM Challenge dataset and µ1=1e2 on
kinect and rug in the Semi-dense dataset. For the estimation
of proxy shape, we adjust the ratio of nearly rigid points αr

between 0 to 1 depending on the deformation characteristics
of the object. δr is set to 1

3 on Mocap and NRSfM Challenge
datasets and 0 on Semi-dense and H3WB datasets.

As described in Sec. 3, αr determines the optimization

approach used for different regions of the 3D structure, so
αr should depend on the specific characteristics of the ob-
ject’s deformation, e.g., spatial coherence, continuity, etc. I
adopted a testing interval of 0.2 for parameter selection ini-
tially, followed by a finer search around promising results
using a step size of 0.1. This granularity proved sufficient
for achieving good outcomes, eliminating the need for fur-
ther refinement in the search steps. The stability test for our
method on αr is illustrated in Fig. 7. In most cases, the al-
gorithm is stable with respect to αr once a rough selection
interval has been determined, and thus careful screening of
αr is not necessary. When we have a large amount of data,
we can segment the keypoints by learning a certain distri-
bution without setting hyperparameters, like [4].

4.2. H3WB Dataset Processing

The H3WB dataset [14] is an entire human body 3D dataset
extended from the H36M dataset [7]. However, this dataset
provides 2D annotations and their corresponding 3D struc-
tures frame by frame rather than in a sequence. We screened
with the criterion of being as contiguous as possible and
obtained five sequences from S1 Eating2, S6 Smoking, S6
Smoking1, S6 Directions, and S7 Waiting2. Since the mo-
tion amplitude of these sequences is vast, we remove the
frames with significant mutations and use spline functions
to interpolate the remaining parts to obtain five more realis-
tic human action sequences: Eating2 (185 frames), Smok-
ing (180), Smoking1 (265), Directions (245), and Waiting2
(335). To obtain the coordinates of the 2D keypoints un-
der the orthogonal projection model, we set up the camera
motion in reference to [1].

We show a partial 3D shape sequences of the H3WB
NRSfM dataset in Fig. 2. We used the experimental setup
in Sec. 1.2 to test the low-rank and smoothing properties of
the H3WB dataset, and the results are displayed in Fig. 8.
The sequences in the H3WB dataset generally have higher
nuclear norm and first-order smoothing errors compared to
the pickup sequence in Mocap. Recovering the 3D shapes
in the H3WB dataset using low-rank and smoothing con-
straints is more complicated. However, it is worth noting
that the TPA-aligned sequences have better low-rank and
smoothing properties than the GT sequences, which some-
what guarantees the validity of the low-rank regularization.

4.3. Additional Experiments on Missing Data

In reality, the movement of an object often leads to occlu-
sion of different regions, resulting in missing 2D observa-
tions obtained from camera shots. Therefore, the stability
of the algorithm on the missing dataset is significant. We
show some tests on missing data in the main text, and we
will add more quantitative results in this section.

We use the model in Sec. 2.2 and follow the settings
in [10] to randomly add masks (occlusion rate 30%) to the



Figure 5. Qualitative Results on the NRSfM Challenge Benchmark. The first row shows the images in the dataset, and the second row
shows the reconstruction results of our method compared to the GT.

Figure 6. Qualitative Results on the Semi-dense and H3WB dataset. The reconstruction results of our method on the Semi-dense dataset
are closer to the GT shapes, while the H3WB dataset is very challenging and cannot yet be accurately reconstructed.

2D observation matrix W. Before reconstruction, we first
solve the low-rank approximation of the observation matrix
to complement it [2], which is important for the initializa-
tion of the camera motion. Tab. 1 shows the test results
on the remaining sequences of the Mocap dataset and the
H3WB dataset. Our method achieves the best performance
on sequences other than Shark and Walking. The experi-
mental results show that the reconstruction errors on data
with and without occlusion display consistency. And the
comparison between them indicates that our method still

possesses stability under random occlusion settings (around
30% occlusion).

Simulating occlusion by randomly adding masks is
friendly to the recovery of observation matrix, whereas the
occlusion scenario in reality tends to be more complex. We
tested on the real occlusion data provided by the NRSfM
Challenge Dataset, and the results are shown in Fig. 9. The
figure shows the reconstruction error comparison with the
CSF2 [5] on two sequences Balloon and Stretch. Our ap-
proach is superior in terms of mean performance, regardless



Table 1. Comparison of reconstruction errors on missing data in Mocap and H3WB datasets. ’ - ’ indicates that test results are
unavailable. Ours(w/) and Ours(w/o) represent the test results with and without occlusion respectively.

Method Shark Face Walking Eating2 Smoking1 Directions Smoking Waiting2
CSF2[6] 0.0653 0.0412 0.1033 0.2556 0.3659 0.3025 0.4058 0.1862
PND[10] 0.0166 0.0177 0.0469 0.2167 0.2954 0.3054 0.4863 0.2256
PMP[11] 0.0116 0.0174 0.0507 - - - - -
Ours(w/) 0.0268 0.0154 0.0796 0.1657 0.1971 0.2858 0.1804 0.1113
Ours(w/o) 0.0258 0.0144 0.0710 0.1767 0.2040 0.2688 0.1693 0.1097

(a) Pickup (0.5) (b) Yoga (0.8)

(c) Stretch (0.8) (d) Dance (0.2)

(e) Articul.(f) (0.1) (f) Stretch(z) (0.1)

Figure 7. Stability test for hyperparameter αr on different se-
quences. Straight lines indicate the results without the SWNN
module and broken lines indicate the reconstruction errors for dif-
ferent αr settings. To the right of the sequence names are the
αr-values corresponding to the results reported in the main text.

of whether the data is occluded or not. In addition, the oc-
clusion rate is the main factor affecting the performance of
the algorithm. The average occlusion rate under all camera
motion types for Balloon is 38%, while for Stretch it is 13%.
As a result the method’s accuracy degradation is more obvi-
ous on Balloon. Apart from the occlusion rate, the accuracy
of our method also relies on the results of matrix comple-
tion. Matrix completion based on the low-rank assumption
tends to fail for some special occlusion scenarios, e.g., the
object is completely invisible at some moments (such as Ar-
ticulated/tricky in NRSfM Challenge Dataset, the object is
completely occluded in the first 35 frames) and excessive
occlusion (such as Tearing/tricky with the occlusion rate of
56%). Searching for more robust matrix-completion algo-

(a) Low-rank Property of Shape Sequences in H3WB Dataset

(b) Smoothing Property of Shape Sequences in H3WB Dataset

Figure 8. Analyzing the low-rank and smoothing properties of
shape sequences in the H3WB dataset. The black dotted line rep-
resents the values of the metrics for the pickup sequence in the
Mocap dataset. The comparison reveals that the sequences in the
H3WB dataset have a greater magnitude of motion and are more
difficult to recover using low-rank and smoothing constraints.

(a) e3d on Seq. Balloon (b) e3d on Seq. Stretch

Figure 9. Reconstruction error on missing data in NRSfM Chal-
lenge Dataset. For a better comparison, the figure shows the test
results under multiple camera motion types and compares the re-
construction errors without missing data.

rithms or updating the observation matrix in iterations [13]
are potential solutions.



4.4. Additional Qualitative Results

In this section, we provide more visualizations of the 3D
reconstruction results of our method. Fig. 5 shows addi-
tional qualitative results on the NRSfM Challenge dataset,
and Fig. 6 illustrates 3D reconstruction results compared
with GT on the Semi-dense and H3WB datasets.
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