
Supplementary Materials for Non-autoregressive Sequence-to-Sequence
Vision-Language Models

1. Model Design Analysis
We provide some additional discussions for objective func-
tion design and simplified training targets.

1.1. Objective Functions Comparison

Cross-Entropy Loss Cross-entropy loss can be used as the
objective function for non-autoregressive sequence gener-
ation, and it classifies each token independently. Token
level cross entropy loss introduces strict prediction and GT
alignment, and a slight misalignment could intrigue severe
penalty to the sequences close to the correct predictions.
This strict alignment confuses the model learning, partic-
ularly, on target sequences of high diversity, for example,
there exist multiple valid captions for an image. Lack of
inter-token dependency modeling causes a large solution
space (LD, where L is the target sequence length and D
is the vocabulary size), and makes the optimization process
hard.
CTC Loss Connectionist Temporal Classification Loss
(CTC) was originally proposed in [1] for Recurrent neural
networks (RNNs) to classify speech signal, where sequence
alignment is difficult to form between the unsegmented
waveform and the sequence of phonemes, constructed by
spikes and blanks separating them, and CTC is also adopted
in machine translation [3] to handle the length discrep-
ancy between source sentence and the translated sentence.
The following URL [2] points to a website that provides a
nice illustration about the motivation and formulation of the
CTC loss, applied to sequence modeling in speech recogni-
tion. Unlike in the standard cross-entropy loss where each
token corresponds to one (or multiple) ground truth results
and the CE loss is trying to encourage the individual tokens
to make the correct prediction by matching with the ground-
truth output. So the cross-entropy loss is an element-wise
loss for each token, if we know it’s ground-truth output. In
the Connectionist Temporal Classification Loss (CTC) case,
we no longer have a known token-wise ground-truth out-
put. Instead, we only know sequence-level ground-truth
output. A solution that is fairly close to the ground-truth in
the sequence level might just have one position shifted to
the right for each token after a certain location; if a strict
CE loss would have been used, its loss can be large. The

CTC loss deals with the alignment issue by marginalizing
predictions that are only slightly off to the ground-truth by
a shift to assign a faith loss. The CTC loss is:
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, where θ denotes the learnable parameters of the model,
p̃(z|xk) denotes the collapsed valid sequences, fyi

(·) com-
putes the logits of xi on target token class yi, k is the num-
ber of all training samples. zi(xk) denotes the “path” from
the input tokens to the output tokens, meaning the value of
zi as a (deterministic) function of the encoding xk.

When implementing the CTC loss, there are certain tech-
niques that have been adopted. For example, since there can
be stretches for the same character output or multiple con-
secutive same character (or sub-words if the basic output
element is subword), a blank token is introduced to differ-
entiate between the two cases. A post-process is done to
remove blank tokens to produce the sequence output. Some
illustration can be found at [2].

1.2. Simplified Training Targets with Knowledge
Distillation

In vision-language tasks, the target sequences often have
high freedom, such as multiple captions for a single image,
which confuses the model training (see Table 1). This is-
sue is avoided in auto-regressive model learning, because
of the teacher-forcing training schema. However, this is-
sue becomes more serious in NARVL learning. To solve
this problem, we use knowledge distillation to reduce the
freedom of target sequences. Specifically, we propose to
set the sequences predicted by an auto-regressive model as
the targets, which are more deterministic compared to the
sequences generated by human. Table 1 shows the compar-
isons of ground truth captions vs the captions generated by
an auto-regressive model.

We also show qualitative result comparisons between the
model trained with ground truth and simplified sequences in
Table 2. It can be seen that the model trained with ground
truth captions struggles to figure out a mode among all pos-
sible valid sequences. In the second example in Table 2,
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Images Captions

• Simplified Caption: A giraffe statue in a room with plants.
• GT-1: A fake giraffe standing beside a bunch of trees.
• GT-2: A forest like place to go and eat food.
• GT-3: A fake giraffe that is hanging on the side of a wall.
• GT-4: A large giraffe standing in the middle of a rainforest cafe.
• GT-5: A giraffe bust hanging by a rain forest cafe sign.

• Simplified Caption: Two men sitting at a table eating pizza.
• GT-1: Two guys in a bar eating pizza and drinking beer.
• GT-2: Two men are sitting side by side as they are eating and smiling,

they both are cutting their food with a knife.
• GT-3: Two men sitting at a table eating pizza.
• GT-4: Two young men sitting next to each other sharing a meal.
• GT-5: Two man sit at a table in a restaurant.

Table 1. Simplified Captions vs GT Captions. We run the autoregressive model on the training dataset to get simplified captions. Each
image is annotated by 5 annotators thus we have GT-1 to GT-5 captions. We see that the diversity of original GT output sequences is higher
than simplified target sequences.

Figure 1. A Plot to show the effect of the first token error on
the remaining sequence tokens. We use RefCOCO dataset here
and the sequence is x1, y1, x2, y2 representing the target object
bbox. The x-axis “First Token Error” is the difference between
the predicted x1 coordinate and the ground truth x1 coordinate.
The y-axis ”Average Error of the Last Three Tokens” is calculated
similarly on y1, x2, y2 for samples with higher corresponding first
token error value and then we take the average. The errors made on
the first token tend to have larger effect on the remaining sequence
in AR model, and the gap to NAR model grows as the severity of
the first token error increases.

repetitive description of the same object “airplane jet plane”
might be the consequence of the confusion of training the
model with high-freedom target sequences. Such problem
is greatly addressed in the model trained with knowledge

distillation, and the generated captions are more fluent and
cohesive.

2. NARVL Sequence Decoding Analysis

In this section, we illustrate sequence generation process
in NARVL and study the features of non-autogressive se-
quences compared to auto-regressive sequences.

2.1. Sequence generation process

We illustrate the sequence generation procedure in NARVL.
Figure 2 contains an example of sequence generation in Im-
age Captioning. The output sequence from NARVL is fixed
length and contains repetitive tokens. According the valid
path selection rule in Q-CTC loss, we remove the repetitive
tokens and output the final sequence.

2.2. Error Propagation

The training of autoregressive model utilizes ground truth
tokens as previous tokens, which however are not available
at inference time. During inference, the model has to gen-
erate the sequence conditioning on previously predicted to-
kens. The quality of the next predicted tokens depends on
the correctness of previous predicted tokens, and the errors
might accumulate and propagate via iterations. We study
how the previous token errors affect later sequence quality
in both AR and NAR models on RefCOCO dataset. We use
the value difference between the GT token coordinates and
the predicted token coordinates as a measure of the incor-
rectness (the smaller value difference, the higher correct-
ness), and as shown in Figure 1, the first token error in the
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Figure 2. An example to illustrate the whole decoder inference process from learnable query tokens to the final output sequence.

autoregressive model has higher negative impact on the rest
of the sequence.
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Images Captions

• CE: A baseball of players a.
• Q-CTC: A baseball of players a on a baseball.
• Q-CTC+KD: A group of baseball players on a baseball field.
• GT: Four baseball players pitching balls in the middle of a baseball

field.

• CE: A large jet is the.
• Q-CTC: A large airplane jet plane is taking off from the runway.
• Q-CTC+KD: An airplane is taking off from an airport runway.
• GT: A large passenger jet taking off from an airport.

• CE: A stop sign a.
• Q-CTC: A stop sign a field a cloudy.
• Q-CTC + KD: A stop sign in the middle of a field.
• GT: The sky is cloudy over a stop sign.

• CE: A man and a pizza.
• Q-CTC: A man and a table with a pizza.
• Q-CTC+KD: A man and a little girl sitting at a table with a pizza.
• GT: A man and a kids at a table with pizza.

• CE: A living room with a and.
• Q-CTC: A living room with a and a room.
• Q-CTC+KD: A living room with a couch and a table.
• GT: A living room has a couch, a table, and a small television.

Table 2. Qualitative Comparisons of three models on MSCOCO Image Captioning dataset. CE: The first model is trained with cross
entropy loss. Q-CTC: The second model is trained with Q-CTC loss. Q-CTC + KD: The third model is trained with Q-CTC loss with
knowledge distillation.)
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