
SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural
Networks

Supplementary Material

A. Proof of Theorem 1
Lemma 1. (Expectation and variance of the product of
independent random variables) Given two independent
random variables a and b with expectation and variance,
we have

E(ab) = E(a)E(b), (S1)

Var(ab) = Var(a)Var(b) + Var(a)E(b)2 +Var(b)E(a)2.
(S2)

Proof. The expectation of ab can be formulated as:

E(ab) = E(a)E(b) + Cov(a, b). (S3)

Since the random variables a and b are independent of each
other, the covariance Cov(a, b) = 0. Thus, we have

E(ab) = E(a)E(b) + 0 = E(a)E(b). (S4)

Using the above conclusion and the definition of variance,
we have

Var(ab) = E((ab− E(ab))2)

= E(a2b2)− E(ab)2

= E(a2)E(b2)− E(a)2E(b)2

= (Var(a) + E(a)2)(Var(b) + E(b)2)− E(a)2E(b)2

= Var(a)Var(b) + Var(a)E(b)2 +Var(b)E(a)2.
(S5)

Lemma 2. (Expectation and variance of the sum of in-
dependent random variables) Given independent random
variables a1, a2, . . . , an with expectation and variance, we
have

E(

n∑
i=1

ai) =

n∑
i=1

E(ai), (S6)

Var(

n∑
i=1

ai) =

n∑
i=1

Var(ai). (S7)

Proof. Considering first the case of two independent ran-
dom variables ai and aj where i ̸= j, the covariance
Cov(ai, aj) = 0, we have

E(ai + aj) = E(ai) + E(aj), (S8)
Var(ai + aj) = Var(ai) + Var(aj) + 2Cov(ai, aj)

= Var(ai) + Var(aj) (S9)

This can be simply generalized to the case of n random vari-
ables as:

E(

n∑
i=1

ai) =

n∑
i=1

E(ai), (S10)

Var(

n∑
i=1

ai) =

n∑
i=1

Var(ai) +
∑

1≤i,j≤n,i ̸=j

Cov(ai, aj)

=

n∑
i=1

Var(ai). (S11)

With Lemma 1 and Lemma 2, we prove the Theorem 1
in the main text.

Proof. Let us first consider the case of DSTT(X,Y; f(·)).
We denote the result of applying linear transformation f on
Y as Z = f(Y) = YW. Thus, each element in the result
of DSTT can be formulated as:

Ii,j [t] =

m∑
k=1

xi,k[t]zj,k[t] =

m∑
k=1

xi,k[t]

(
m∑
l=1

yj,l[t]wl,k[t]

)
(S12)

Based on the assumption, each zj,k[t] has a mean of 0
and variance of 1, and each xi,k[t] subjects to Bernoulli
distribution B(fx), thus we have E(xi,k[t]) = fx and
Var(xi,k[t]) = fx(1 − fx). According to Lemma 1, we
have

E(xi,k[t]zj,k[t]) =0 · fx = 0, (S13)

Var(xi,k[t]zj,k[t]) =1 · fx(1− fx) + 1 · f2
x

+ fx(1− fx) · 02

=fx. (S14)

In addition, each zj,k[t], k = 1, . . . , q consists of a set of
yl,k[t], l = 1, . . . , q that do not overlap each other. Thus
zj,k[t] can also be viewed as independent random variables.
According to Lemma 2, we have

E(Ii,j [t]) =

m∑
k=1

0 = 0, (S15)

Var(Ii,j [t]) =

m∑
k=1

fx = fxm. (S16)

Similar to DSTT, each element in the result of DST can be
formulated as:

Ii,j [t] =

m∑
k=1

xi,k[t]zk,j [t] =

m∑
k=1

xi,k[t]

(
q∑

l=1

yk,l[t]wl,j [t]

)
(S17)

And we also have E(xi,k[t]zk,j [t]) = 0 and
Var(xi,k[t]zj,k[t]) = fx. Thus, the expectation
and variance of Ii,j [t] are also E(Ii,j [t]) = 0 and
Var(Ii,j [t]) = fxm.

Further Discussion. In Eq. (S15) and Eq. (S16), we
treat zj,k[t] as independent random variables, since each
zj,k[t], k = 1, . . . , q consists of a set of yl,k[t], l = 1, . . . , q
that do not overlap each other. It is true for the p×p convolu-
tion with stride p used in this paper. However, this property
does not hold for all generalized linear transformations. For
example, the 3 × 3 convolution with stride 1 leads to input
overlap. For these operations, we need a stronger assump-
tion that assuming zj,k[t] are independent random variables.

B. Scaling Factors in Existing Spiking Self-
Attention Mechanisms

In the main text, we propose that existing spiking self-
attention mechanisms lack reasonable scaling methods and
design scaling factors for our DSSA. In this section, we use
a similar approach to design scaling factors for these ex-
isting methods and thereby analyze the limitations of these
methods.
Scaling Factor in Spiking Self-Attention (SSA). First,
we try to design the scaling factor for the Spiking Self-
Attention (SSA) in Spikformer [11]. The SSA can be for-
mulated as follows:

Q = SN(BN(XWQ)), (S18)
K = SN(BN(XWK)), (S19)
V = SN(BN(XWV)), (S20)

SSA(Q,K,V) = SN(QKTV ∗ c), (S21)

where X ∈ RHW×d is the input, WQ,WK ,WV ∈ Rd×d

are weight matrices, H and W are the height and width of
input, respectively, d is the embedding dimension, c is the
scaling factor. We denote I = QKTV, each element in I
can be formulated as:

Ii,j [t] =

d∑
r=1

HW∑
l=1

qi,r[t]kr,l[t]vl,j [t]. (S22)

Assume that all elements in Q, K, and V are independent
random variables, qiq,jq [t] in Q subject to Bernoulli distri-
bution qiq,jq [t] ∼ B(fQ), kik,jk [t] in K subject to B(fK),
viv,jv [t] in V subject to B(fV), respectively, fQ, fK , and

fV are the average firing rate of Q, K, and V, respectively.
We have E(Ii,j [t]) = HWdfQfKfV .

However, the form of variance is complex. This is be-
cause the summation terms qi,r[t]kr,l[t]vl,j [t] are not inde-
pendent thus introducing a lot of covariance. The variance
can be formulated as:

Var(Ii,j [t])

=

d∑
r=1

HW∑
l=1

(
Var(qi,r[t]kr,l[t]vl,j [t])

+
∑
r′ ̸=r

Cov(qi,r[t]kr,l[t]vl,j [t], qi,r′ [t]kr′,l[t]vl,j [t])

+
∑
l′ ̸=l

Cov(qi,r[t]kr,l[t]vl,j [t], qi,r[t]kr,l′ [t]vl′,j [t])

)

=HWd

(
fQfKfV (1− fQ)(1− fK)(1− fV)

+ fQfKf2
V (1− fQ)(1− fK)

+ fQf
2
KfV (1− fQ)(1− fV)

+ f2
QfKfV (1− fK)(1− fV)

+ fQf
2
Kf2

V (1− fQ)

+ f2
QfKf2

V (1− fK)

+ f2
Qf

2
KfV (1− fV)

+ (d− 1)(f2
Qf

2
KfV − f2

Qf
2
Kf2

V)

+ (HW − 1)(fQf
2
Kf2

V − f2
Qf

2
Kf2

V)

)
=HWdfQfKfV

(
1− (HW + d− 1)fQfKfV

+ (d− 1)fQfK + (HW − 1)fKfV

)
.

(S23)
As shown in Eq. (S23), this form is overly complex and
lacks practicality. Thus it is difficult to design the scaling
factor for SSA.
Scaling Factor in Spike-driven Self-Attention (SDSA).
Next, we try to design the scaling factor for the Spike-driven
Self-Attention (SDSA) in Spike-driven Transformer [8].
The SDSA can be formulated as follows:

SDSA(Q,K,V) = SN(SUMc(Q⊗K))⊗V, (S24)

where ⊗ denotes Hadamard product, SUMc represents the
sum of each column, Q, K, and V are the same as in
Eq. (S18) to Eq.(S20). The original SDSA does not have a
scaling factor. We believe that there should be a scaling fac-
tor before the spiking neuron layer and the Eq. (S24) should
be reformulated as follows:

SDSA(Q,K,V) = SN(SUMc(Q⊗K) ∗ c)⊗V, (S25)

Table S1. Further ablation study on ImageNet100 dataset.
The number of parameters for all variants is comparable to
SpikingResformer-S.

Model Acc. (%)

SpikingResformer-S 88.06
Spike-driven Transformer-8-384 (w/o scaling) 83.06
Spike-driven Transformer-8-384 (with scaling) 83.96
SpikingResformer-S with SDSA (w/o scaling) not-converge
SpikingResformer-S with SDSA (with scaling) 87.74

where c is the scaling factor. We denote I = SUMc(Q⊗K),
each element in I can be formulated as:

Ij [t] =

HW∑
i=1

qi,j [t]ki,j [t]. (S26)

Following the same assumption in SSA, we have

Var(Ij [t]) =

HW∑
i=1

Var(qi,j [t]ki,j [t])

=

HW∑
i=1

(fQfK(1− fQfK))

= HWfQfK(1− fQfK).

(S27)

Thus, the scaling factor c in SDSA should be c =
1/
√
HWfQfK(1− fQfK).

To validate the effectiveness of this scaling factor, we
conduct two sets of further ablation experiments. One
set introduces our proposed scaling factor to the Spike-
driven Transformer. The other replaces the DSSA in Spik-
ingResformer with the SDSA with our proposed scaling
factor. The p × p convolutions and the GWSFFN remain
unchanged. Experimental results are listed in Tab. S1. As
shown in Tab. S1, the scaling factor successfully solves the
non-converge problem, demonstrating the effectiveness of
our proposed scaling factor and its necessity for multi-scale
feature map inputs. Moreover, the scaling factor also im-
proves the performance of SDSA with single-scale feature
map inputs.

C. Equivalence of Convolution to Linear
Transformation

In this section, we discuss the equivalence of convolution
to linear transformation. For ease of understanding, we first
visualize a simple example, and then give a formal descrip-
tion of the equivalence. Since no dynamics in the temporal
domain are involved here, we omit the time dimension.

Fig. S1 shows how a 2×2 convolution with a stride of
2 on a 4×4 input is equivalent to a linear transformation.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

3 4

1 2

3 4

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1

2

3

4

1

2

3

4

Input

Kernel Output

Input OutputWeight

 (convolution)

 (linear transformation)

Figure S1. Diagram of the equivalence of convolution to linear
transformation. Top: Convp(·) on a 4×4 input where p = 2;
Bottom: Its equivalent linear transformation.

In order to convert the convolution to its equivalent lin-
ear transformation, we first reshape the h × w convolu-
tion kernel W to a hw × 1 weight matrix W′, where h
and w are the height and width of the convolution kernel,
respectively. Here h = w = 2. Then, we rewrite the
Hin × Win input Y to HoutWout × hw input Y′, where
Hin and Win are the height and width of the input, Hout

and Wout are the height and width of the output, respec-
tively. Here Hin = Win = 4, Hout = Wout = 2. Each row
in Y′ is a patch of input corresponding to an element in the
output. By the above process, we convert the convolution to
its equivalent linear transformation.

We give a formal description of the equivalence of
convolution to linear transformation. Given an input
Y ∈ {0, 1}Hin×Win×Cin and a convolution kernel W ∈
Rh×w×Cout×Cin , the convolution with stride p can be for-
mulated as follows:

Z = Y ⊗W, (S28)
zi,j,cout

=

h∑
k=1

w∑
l=1

Cin∑
cin=1

(
y(i−1)∗p+k,(j−1)∗p+l,cin · wk,l,cout,cin

)
.

(S29)

Let gY be a mapping from {0, 1}Hin×Win×Cin to
{0, 1}HoutWout×hwCin and gW be a mapping from

Rh×w×Cout×Cin to RhwCin×Cout , where

Y′ = gY (Y),

s.t. y′i∗Wout+j,cin∗hw+k∗w+l = y(i−1)∗p+k,(j−1)∗p+l,cin ,

(S30)

W′ = gW (W),

s.t. w′
cin∗hw+k∗w+l,cout

= wk,l,cout,cin . (S31)

The linear transformation of gY (Y) with weight matrix
gW (W) can be formulated as:

Z′ = Y′W′ = gY (Y)gW (W), (S32)
z′i∗Wout+j,cout

=

h∑
k=1

w∑
l=1

Cin∑
cin=1(

y′i∗Wout+j,cin∗hw+k∗w+l · w′
cin∗hw+k∗w+l,cout

)
=

h∑
k=1

w∑
l=1

Cin∑
cin=1

(
y(i−1)∗p+k,(j−1)∗p+l,cin · wk,l,cout,cin

)
=zi,j,cout

. (S33)

Thus, the convolution is equivalent to linear transformation.

D. Self-Attention in DSSA
Dual Spike Self-Attention (DSSA) has no explicit Query,
Key, and Value, which makes it quite different from the
form of the Vanilla Self-Attention (VSA). In this section,
we further discuss how DSSA achieves self-attention.
Recall. The DSSA can be formulated as follows:

DSSA(X) = SN(DST(AttnMap(X),X; f(·)) ∗ c2),
(S34)

AttnMap(X) = SN(DSTT(X,X; f(·)) ∗ c1), (S35)
f(X) = BN(Convp(X)). (S36)

And the Dual Spike Transformation (DST) can be formu-
lated as follows:

DST(X,Y; f(·)) = Xf(Y) = XYW, (S37)

DSTT(X,Y; f(·)) = Xf(Y)T = XWTYT. (S38)

DSSA achieves self-attention by the two DSTs. The
first one, DSTT(X,X; f(·)), produces the attention map.
It computes the multiplicative attention of a pixel in the
input X and a p × p patch of feature transformed by the
p×p convolution. The output of DSTT(X,X; f(·)) is then
scaled and fed to the spiking neuron as the input current to
generate the spiking attention map. The spiking attention
map is a binary attention map consisting of spikes. Each
spike si,j in this spiking attention map signifies attention
between the patch i (pixel i) and patch j. The second one,

DST(AttnMap(X),X; f(·)), produces the output feature.
For each pixel, it computes the sum of features of patches
that have attention to this pixel to form the output features.
In this way, the first DST is similar to the product of QKT

in the VSA, and the second DST is similar to the product of
attention map and V in the VSA.

E. Experiment Details

ImageNet Classification. ImageNet [2] is a vast collec-
tion of static images and one of the most commonly used
datasets in computer vision tasks. It consists of around
1.2 million high-resolution images, categorized into 1,000
distinct classes. Each class includes approximately 1,000
images, representing a diverse range of objects and scenes,
making it an effective reflection of real-world scenarios.

For ImageNet classification experiments, we gener-
ally follow the data augmentation strategy and training
setup in [8]. We use the standard preprocessing, i.e.,
data normalization, randomly crop and resize the input to
224×224 during traning, and set the input size to 224×224
and 288×288 for inferince. We employ the standard
data augmentation methods including random augmenta-
tion, mixup, cutmix, and label smoothing1, similar to [8].
We use the AdamW optimizer with a weight decay of
0.01. The batch size varies from 256 (SpikingResformer-
Ti) to 128 (SpikingResformer-L) depending on the model
size. We train the models for 320 epochs with a cosine-
decay learning rate whose initial value varies from 0.001
(SpikingResformer-Ti) to 0.0005 (SpikingResformer-L).

Since the scaling factors in DSSA require the firing rate
of input fX and attention map fAttn, we use an exponential
moving average with a momentum of 0.999 to count the
average firing rate during training, and use the average firing
rate counted during training in inference. We used the same
method to count the average firing rate in all subsequent
experiments.
Ablation Study. All the ablation experiments are con-
ducted on the ImageNet100 dataset. It is a subset of the Ima-
geNet dataset consisting of 100 categories from the original
ImageNet dataset. The experimental setup basically follows
the ImageNet classification experiments. The weight decay
is increased to 0.05 since the ImageNet100 is smaller and
easy to overfit.
Transfer Learning on Static Image Datasets. We first
perform transfer learning experiments on static image
datasets CIFAR10 and CIFAR100 [4]. The CIFAR-10
dataset comprises 60,000 samples, divided into 10 cate-
gories with 6,000 samples in each category. Each group
has 5,000 training samples and 1,000 testing samples. The
images in the dataset are colored and have a resolution of
32×32 pixels. On the other hand, the CIFAR-100 dataset is

1Implemented by PyTorch Image Models

Table S2. Detailed comparison on static datasets.

Method Type Architecture #Param (M) T Top-1 Acc. (%)

CIFAR10 CIFAR100

STBP-tdBN [9] Direct Training ResNet-19 12.54
2 92.34 -
4 92.92 -
6 93.16 -

PLIF [3] Direct Training 6 Conv, 2 FC 36.71 8 93.50 -

Dspike [6] Direct Training ResNet-18 11.21
2 93.13 71.68
4 93.66 73.35
6 94.25 74.24

Spikformer [11] Direct Training
Spikformer-4-256 4.13 4 93.94 75.96
Spikformer-2-384 5.74 4 94.80 76.95
Spikformer-4-384 9.28 4 95.19 77.86

Spikingformer [10] Direct Training
Spikingformer-4-256 4.13 4 94.77 77.43
Spikingformer-2-384 5.74 4 95.22 78.34
Spikingformer-4-384 9.28 4 95.61 79.09

Spike-driven Transformer [8] Direct Training Spike-driven Transformer-2-512 10.21 4 95.6 78.4

Spikformer [11] Transfer Learning
Spikformer-4-384 9.28 4 95.54 79.96
Spikformer-8-384 16.36 4 96.64 82.09
Spikformer-8-512 29.08 4 97.03 83.83

SpikingResformer (Ours) Transfer Learning SpikingResformer-Ti 10.76 4 97.02 84.53
SpikingResformer-S 17.25 4 97.40 85.98

Table S3. Detailed comparison on neuromorphic datasets.

Method Type Archtecture #Param (M) T Top-1 Acc. (%)

CIFAR10-DVS DVSGesture

STBP-tdBN [9] Direct Training ResNet-19 12.54 10 67.8 -
ResNet-17 1.40 40 - 96.87

PLIF [3] Direct Training 5 Conv, 2 FC 17.22 20 74.8 -
6 Conv, 2 FC 1.69 20 - 97.57

Dspike [6] Direct Training ResNet-18 11.21 10 75.4 -

Spikformer [11] Direct Training Spikformer-2-256 2.55 10 78.6 95.8
16 80.6 97.9

Spikingformer [10] Direct Training Spikingformer-2-256 2.55 10 79.9 96.2
16 81.3 98.3

Spike-driven Transformer [8] Direct Training Spike-driven Transformer-2-256 2.55 16 80.0 99.3

SpikingResformer (Ours) Transfer Learning SpikingResformer-Ti 10.76 10 84.7 93.4
SpikingResformer-S 17.25 10 84.8 93.4

an extension of the CIFAR-10 dataset, designed to provide
a more challenging and diverse benchmark for image recog-
nition algorithms. It contains 100 classes for classification,
encompassing a broader range of objects and concepts than
the CIFAR-10 dataset’s limited set of 10 classes.

We finetune the SpikingResformer-Ti and Spiking-
Resformer-S pretrained in ImageNet classification on these
datasets. We first replace the 1000-FC classifier layer with
a randomly initialized 10-FC (CIFAR10) or 100-FC (CI-
FAR100) layer. We finetune the model for 100 epochs with
an initial learning rate of 1 × 10−4 and cosine-decay to

1×10−5. The batch size is set to 128. We employ data aug-
mentation methods including random augmentation, mixup,
and label smoothing. We use the AdamW optimizer with a
weight decay of 0.01.

Transfer Learning on Neuromorphic Datasets. We
also perform transfer learning experiments on neuromor-
phic dataset CIFAR10-DVS [5] and DVSGesture [1]. The
CIFAR10-DVS dataset [5] is created by converting the
static images in CIFAR10. This is done by moving the im-
ages and capturing the movement using a dynamic vision
sensor. The CIFAR10-DVS dataset consists of 10,000 sam-

ples, with 1,000 samples per category. Each sample is an
event stream with a spatial size of 128×128. It is worth
noting that the CIFAR10-DVS dataset does not have prede-
fined training and test sets. In our experiments, we select
the first 900 samples of each category for training and the
last 100 for testing.

The DVSGesture [1] dataset is created by directly captur-
ing the human gestures using the DVS128 dynamic vision
sensor. It has 1,342 instances of 11 hand and arm gestures.
These gestures were grouped in 122 trials, performed by 29
subjects under 3 different lighting conditions. The dataset
includes hand waving, arm rotations, air guitar, etc.

We use the following preprocessing procedure. Firstly,
we divide the event stream into ten slices, each of which
contains an equal number of events. Next, for each slice,
we stack the events into a single frame consisting of three
channels. These channels represent positive events, nega-
tive events, and all events. Finally, we use this frame as the
input for that particular time step. In this way, we use a time
step of 10 for these datasets.

We use the data augmentation technique proposed in [7].
Other settings follow the experiments of transfer learning
on static image datasets.

F. Detailed Comparison of Transfer Learning
Results

Static Image Datasets. As shown in Tab. S2, Spik-
ingResformer outperforms other transfer learning methods
on CIFAR10 and CIFAR100 datasets with fewer param-
eters. The SpikingResformer-Ti achieves 84.53% accu-
racy on the CIFAR100 dataset, outperforming Spikformer-
8-512 by 0.7% with only 11.14M parameters. More-
over, the SpikingResformer-S achieves 85.98% accuracy
on the CIFAR100 dataset, which is the state-of-the-art re-
sult and outperforms Spikformer-8-512 by 2.15%. Com-
pared to direct training methods, the SpikingResformer ob-
tained from transfer learning has significantly higher per-
formance. The SpikingResformer-Ti outperforms the Spik-
ing Transformer-2-512 by 6.1% with a comparable number
of parameters. This demonstrates the advantage of transfer
learning.
Neuromorphic Datasets. Since the existing spiking vi-
sion transformer does not perform transfer learning ex-
periments on neuromorphic datasets, we mainly compare
with direct training methods. However, since the size
of the models trained directly on the CIFAR10-DVS and
DVSGesture is typically much smaller than the models
pre-trained on ImageNet, we are not able to compare
them to models with comparable parameters. As shown
in Tab. S3, the SpikingResformer obtained from transfer
learning has significantly higher performance on CIFAR10-
DVS. The SpikingResformer-Ti achieves 84.7% accuracy
on CIFAR10-DVS, outperforming Spiking Transformer-2-

256 by 4.7% and outperforming Spikingformer-2-256 by
3.4%. However, the transfer learning results on DVS-
Gesture fail to achieve comparable performance to direct
training. SpikingResformer only achieves 93.4% accuracy
on DVSGesture, falling behind the state-of-the-art method
Spike-driven Transformer by 5.9%. We believe that this is
mainly due to the way CIFAR10-DVS is constructed dif-
fers from DVSGesture. CIFAR10-DVS is converted from
CIFAR10 using a dynamic vision sensor, which does not
contain temporal information. Thus, models pre-trained on
static datasets can transfer to CIFAR10-DVS well. How-
ever, DVSGesture is directly created from human gestures,
which contain rich temporal information. As a result, mod-
els pre-trained on static datasets do not transfer well to
DVSGesture.

References
[1] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jef-

frey McKinstry, Carmelo Di Nolfo, Tapan Nayak, Alexander
Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al.
A low power, fully event-based gesture recognition system.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7243–7252, 2017. 5, 6

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255, 2009.
4

[3] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier,
Tiejun Huang, and Yonghong Tian. Incorporating learnable
membrane time constant to enhance learning of spiking neu-
ral networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2661–2671, 2021. 5

[4] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 4

[5] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and
Luping Shi. CIFAR10-DVS: an event-stream dataset for ob-
ject classification. Frontiers in Neuroscience, 11:309, 2017.
5

[6] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng,
Yongqing Hai, and Shi Gu. Differentiable spike: Rethink-
ing gradient-descent for training spiking neural networks.
Advances in Neural Information Processing Systems, 34:
23426–23439, 2021. 5

[7] Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller,
and Priyadarshini Panda. Neuromorphic data augmentation
for training spiking neural networks. In Proceedings of the
European Conference on Computer Vision, pages 631–649,
2022. 6

[8] Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong
Tian, Bo Xu, and Guoqi Li. Spike-driven transformer. In
Advances in neural information processing systems, pages
1–20, 2023. 2, 4, 5

[9] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li.
Going deeper with directly-trained larger spiking neural net-

works. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 11062–11070, 2021. 5

[10] Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang,
Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Spiking-
former: Spike-driven residual learning for transformer-based
spiking neural network. arXiv preprint arXiv:2304.11954,
pages 1–16, 2023. 5

[11] Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang,
Shuicheng Yan, Yonghong Tian, and Li Yuan. Spikformer:
When spiking neural network meets transformer. In Proceed-
ings of the International Conference on Learning Represen-
tations, pages 1–17, 2023. 2, 5

