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Supplementary Material

1. More model designs
1.1. Preliminary

Neural-ODE fundamentals. The Neural Ordinary Dif-
ferential Equation (N-ODE) is proposed for learning some
simple continuous implicit processes in dynamic systems.
The core characteristic is that it uses neural networks to pa-
rameterize derivatives of hidden states f(h(t), t, θ) instead
of specifying a discrete sequence of hidden layers h(t).
Given a continuous process ht, the update process is to cal-
culate the derivatives dh(t)

dt via a neural network,

h(t+ 1) = ht + f(ht, θt) (1)

dh(t)

dt
= f(h(t), t, θ) (2)

1.2. Decoders, Loss and Post-processing

The decoders are inherited from FIERY[1, 3, 4]. Five dis-
tinct decoders produce centerness regression, BEV segmen-
tation, offset to the centers, future flow vectors, and in-
stance given the BEV feature representation of past and fu-
ture frames. The shared BEV feature will be input into a
shared Resnet18 BEV backbone and five independent CNN
blocks.

The loss design consists of spatial regression loss, seg-
mentation loss, and probabilistic loss. Spatial regression
loss is responsible for regressing centerness and offsets in a
L1 loss or mean square error(MSE/L2) loss manner. Seg-
mentation loss is the computation of the cross-entropy loss
on multi-frame BEV semantic grids from the past to the fu-
ture. Probabilistic loss computes the divergence between
updated BEV features and measurement features with re-
gard to their mean and variance on BEV grids. The overall
loss is calculated as follows:

Loss = λ1 ∗ Lseg + λ2 ∗ Lspatial + λ3 ∗ Lkld (3)

In Eq. (3), λ is the weight of each loss. For simplicity, we
set λ1 = 0.5, λ2 = 0.5, and λ3 = 1.0.

2. More Experiments
2.1. Runtime Analysis

Table. 1 compares the run-time training memory of the
proposed method with baselines in different dataset set-
tings. As the time interval becomes denser, the training
cost for standard GRU units becomes unaffordable, whereas

the proposed method is more adaptable. For standard 4-
keyframe supervision, StreamingFlow only requires +2G
more memory compared to a BEVFusion-style implemen-
tation. As the density of supervision signals increases, the
ODE approach requires −4G less memory than standard
GRU counterparts.

The inference speed of StreamingFlow is measured by
the average time required to process validation samples
over 250 forward passes on a laptop equipped with a
single RTX3090. As StreamingFlow inherits the same
framework and modules from FIERY[3], it is compared
with FIERY[3] and StretchBEV[1]. For the settings of
the standard task and variable ode steps, StreamingFlow
runs at 0.1968s/sample, faster than FIERY(0.6436s/sample)
and StretchBEV(0.6469s/sample) reported in [1]. The
SpatialGRU-ODE works at a similar speed with prior tem-
poral modules. The inference speed for tasks with finer
granularity (40-frame experiment) is around 0.5s per sam-
ple. Obviously, higher prediction frequencies harm the run-
time delay. Therefore, sparse streaming prediction based on
variable ODE step by request is recommended.

Dataset Config Supervised frames Memory

nuScenes GRU-base 4 11G
nuScenes GRU-ODE 4 13G
nuScenes GRU-base 40 39G
nuScenes GRU-ODE 40 OOM

Lyft GRU-base 10 28G
Lyft GRU-ODE 10 24G

Table 1. Runtime analysis of training cost of different model con-
figs. ’OOM’ denotes out-of-memory for one batch in a single
A6000 GPU (48G memory)

2.2. Baselines

Baselines from prior works Vision track. FIERY[3] is
the first practice for end-to-end stochastic occupancy flow
prediction. StretchBEV[1]1 uses a variational autoencoder
for learning implicit temporal dynamics and future predic-
tion in a decoupled style. ST-P3[4] is the first end-to-end
planning framework that considers occupancy prediction.
BEVerse[14] is the first multi-task model for both object-
and grid-level perception.

1StretchBEV-P uses ground-truth labels of past frames as a posterior
for prediction, which is unfair for comparison with end-to-end occupancy
prediction, so only StretchBEV without labels is compared in the table.



LiDAR track. MotionNet[12] is the first practice for
learning BEV grid motion using a simple spatial-temporal
voxel-based backbone (STPN). BE-STI[11] develops the
backbone with two new blocks, SeTE and TeSe to enhance
temporal feature representation. Since LiDAR track algo-
rithms are not originally proposed for this task, we reimple-
ment them using original BEV backbones and prediction
heads for this task.

Fusion track. FusionAD[13] is a multi-modality, multi-
task, end-to-end driving framework. They build a trans-
former to conduct multi-modal BEV-level fusion and down-
stream perception, prediction and planning tasks. Occu-
pancy prediction results are from the original paper.

Baselines of fusion strategies Synchronous fusion.
The process is first multi-modal spatial fusion, then mixed-
modal temporal fusion, and finally standard GRU mod-
ules. The assumption is that, at each frame, LiDAR points
are tightly synchronized and fused with the nearest im-
ages. Spatial fusion follows the same methodology as
BEVFusion[5]. This process requires strict synchronization
and weak time interval uniformity.

Asynchronous fusion: The process is first single-modal
temporal fusion, then standard GRU modules, and finally
mixed-modal spatial fusion on future timestamps. Single-
modal temporal fusion is first performed using the spatio-
temporal convolution (STC) unit, and then spatial fusion is
performed during prediction. The assumption is that the
perception and prediction times are strictly uniform. This
process requires only weak synchronization and strict time
interval uniformity.

2.3. Perception Results

As a similar task to flow prediction, we also compare the
performance of BEV segmentation of intermediate repre-
sentations with prior arts in Tab. 2. We evaluate two main
traffic agent categories, vehicle, and pedestrian by IoU met-
ric. With timestamp-agnostic camera-LiDAR fusion by
SpatialGRU-ODE, StreamingFlow also achieves impressive
progress in typical agent segmentation. It surpasses ST-
P3[4] by +10.7 for vehicles and +22.7 for pedestrians.

2.4. Analysis and Discussion

We provide an intuitive analysis of streaming forecasting
training and inference efficiency. Either dense or sparse
labels are applicable for the supervised signal of future
frames, but the extremely sparse supervised signal as super-
vision may degrade the performance of SpatialGRU-ODE,
as the state may be updated too many times until the next
supervised frame. In contrast, the denser supervised sig-
nal can strengthen the method to surpass the state-of-the-art
synchronized spatial fusion method. For accurate inference
at future timestamps with low latency, SpatialGRU-ODE
with variable time step, which is closely related to different

Method Vehicle / IoU Pedestrian / IoU

VED[6] 23.3 11.9
VPN[7] 28.2 10.3
PON[9] 27.9 13.9
Lift-Splat[8] 31.2 15.0
IVMP[10] 34.0 17.4
FIERY[3] 38.0 17.2
ST-P3 [4] 40.1 14.5

StreamingFlow 50.8 37.2

Table 2. Comparison with the state-of-the-art methods for BEV
segmentation of vehicles and pedestrians on nuScenes[2] valida-
tion set.

prediction requests, is the best trade-off for accuracy and
latency.

2.5. More visualizations

Demo videos for standard occupancy forecasting, stream-
ing occupancy forecasting and long-term zero-shot or su-
pervised occupancy forecasting for more scenarios will
be available at https://github.com/synsin0/
StreamingFlow.

In the 40-frame prediction visualization, the static in-
stances remain static overall with only minor changes in
the perception range. Though grid-centric perception is dis-
crete in essence, the prediction results show that Stream-
ingFlow successfully learns the temporal dynamics in con-
tinuous time series.
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