
TransNeXt: Robust Foveal Visual Perception for Vision Transformers
Appendix

Dai Shi
daishiresearch@gmail.com

Code: https://github.com/DaiShiResearch/TransNeXt

A. Equivalent Form of Pixel-Focused Attention
Mathematically, pixel-focused attention is equivalent to the
following form:

Kconcat = Concat(Kρ(i,j),Kσ(X))

Vconcat = Concat(Vρ(i,j), Vσ(X))
(17)

PFA(X(i,j)) =softmax(
Q(i,j)K

T
concat√
d

+B(i,j))Vconcat

(18)

This form is more concise mathematically. However, in
parallel computation, merging ρ(i, j) and σ(X) on key and
value to form Kconcat, Vconcat in Rnh×HW×(HpWp+k2)×d

creates two large temporary tensors. This results in signifi-
cant memory usage and memory access pressure, severely
slowing down the model speed. Therefore, in practical ap-
plications, we use the method of separately calculating the
attention of the two paths and only adding the results. Calcu-
lating the attention weight from the concatenated similarity
result in the same softmax is crucial, as it ensures the mathe-
matical equivalence of these two forms.

B. Comparative Analysis of Human Vision and
Attention Visualization

The human visual system is characterized by a dichotomy
between foveal and peripheral vision. The foveal vision,
covering only 1 to 2 degrees of the central field of view, is
optimized for high sensitivity, while the peripheral vision,
with a much larger receptive field, is optimized for a broad
field of view. This dichotomy suggests that humans primarily
utilize peripheral vision for object localization and naviga-
tion, but lack precision in detail. To compensate for this, the
human eye executes rapid movements, known as saccades,
allowing for the processing of information from multiple
fields of view and the subsequent integration of this infor-
mation. Recent research [1] on biological vision suggests
that when superior foveal vision information is available,

the human brain does not simply discard peripheral vision
information, but compares the inputs from both, weighing
their relative reliability to complete the integration of in-
formation. This process is a highly complex computation
known as transsaccadic perception.

Pixel-focused attention, in comparison to human vision,
maintains a high degree of similarity with the human visual
system in numerous design aspects. Empirical studies D.5
demonstrate that the sliding window path in pixel-focused
attention, which simulates foveal vision and continuous eye
movements, can achieve superior performance with a min-
imal 3× 3 window size for perception. This experimental
result aligns closely with the extremely narrow field of view
coverage of human foveal vision. Particularly in the context
of high-resolution image input, the coverage range of the
3×3 sliding window is exceedingly small. The pooling path
in pixel-focused attention, which simulates human peripheral
vision, maintains full-image perception and overlaps with
the fine-grained perception area of the sliding window path.
The features of these two window paths compete and corre-
late in the same softmax. This design enables the model to
compare the detailed features perceived by foveal vision with
the comprehensive rough outline of the object perceived by
peripheral vision in terms of similarity, thereby integrating
and calibrating information across the field of view. From
the perspective of biological vision, the current design of
pixel-focused attention can effectively simulate the highly
complex transsaccadic perception in human visual percep-
tion. In contrast, the Focal Transformer, which employs
a window partitioning approach, is unable to simulate the
continuous movements of the human eye. Furthermore, its
method of pooling only the peripheral windows prevents
the model from fully perceiving the comprehensive rough
outline of the object, thereby increasing its inconsistency
with human transsaccadic perception.

In the terminal attention layer of TransNeXt’s third stage,
we employ the query token located at the center position
(H÷2,W ÷2) of the feature map (subsequently represented
by the [center] subscript), to calculate softmax(τ logN ∗
Q̂[center]K̂

T ), and softmax(τ logN ∗ Q̂[center]K̂
T
σ(X)) re-

1

https://github.com/DaiShiResearch/TransNeXt


Head 1 Head 2 Head 3 Head 4 Head 1 Head 2 Head 3 Head 4

Head 1 Head 2 Head 3 Head 4Head 1 Head 2 Head 3 Head 4

Figure 7. The attention map of foveal and peripheral vision when the visual focus is centered. The central query token of the feature map is
utilized to compute softmax(τ logN ∗ Q̂[center]K̂

T ) and softmax(τ logN ∗ Q̂[center]K̂
T
σ(X)). For effective visualization, we employ a

high-resolution image input of 6402 and calculate the attention map using the final attention layer of stage 3. It’s important to note that
during the model’s standard operation, the foveal vision perception only utilizes the features of the k × k area near the query. However,
given that this area is too small to provide sufficient information for observation, we use undownsampled global features for visualization
purposes, allowing us to discern the features of interest to the foveal vision perception.

spectively. This allows us to visualize the attention map of
the image feature perception in the sliding window path and
the pooling feature path at the central position of the picture,
with the results presented in Fig 7. It can be observed that
in the same head, the sliding window path simulating foveal
vision consistently maintains interest in specific textures,
fluff, and high sharpness edges, while the pooling path sim-
ulating peripheral vision consistently has a reliable grasp
of the rough outline of the object. The features of the two
paths are further matched and calibrated in the same softmax,
resulting in more accurate output. We posit that this working
method closely resembles the integration method of foveal
and peripheral vision found in human vision research, further
substantiating the high consistency of our biomimetic design
with human vision.

C. Detailed Settings

C.1. Configurations of TransNeXt Variants

C.2. Training Settings for ImageNet-1K

To ensure reproducibility and consistency with prior work,
we adopt the training strategy of PVTv2 [26], which in-
corporates various data augmentation techniques, including
Random Augmentation [4], Mixup [31], CutMix [30], and
Random Erasing [32]. To regularize our model, we employ
Label Smoothing [23] and DropPath [9]. We optimize our
model using AdamW [19] optimizer with a gradient clipping
norm of 1.0 and a weight decay of 0.05. The initial learning
rate for all models is set to 10−3, with a warm-up period of
5 epochs and an initial warm-up learning rate of 10−6. We

utilize the cosine learning rate scheduler [18] to decay the
learning rate. During training, we randomly crop images
to a size of 224 × 224. During the evaluation phase, for
images with a resolution less than 384 × 384, we apply a
center-crop with a crop ratio of 0.875. However, for images
of larger sizes, we do not perform any cropping, following
previous work [17]. We do not employ the EMA weights.
The stochastic depth drop rates for each model are provided
in Table 4.

C.3. Training Settings for Downstream Tasks

For experiments on the ADE20K [33] and COCO [12]
datasets, we followed the training settings of Swin [15].
We utilized the MMDetection [2] and MMSegmentation [3]
toolboxes for training.

For the COCO 2017 dataset [12], we configured the learn-
ing rate to 10−4 and the weight decay to 0.05. In the context
of the Mask R-CNN and DINO methods, the stochastic
depth drop rates for TransNeXt-Tiny, TransNeXt-Small, and
TransNeXt-Base were set to 0.3, 0.5, and 0.6, respectively.
The model was trained for 12 epochs with a batch size of 16
using the standard 1× schedule.

For the ADE20K dataset [33], in the UperNet method,
we set the learning rate to 6× 10−5 and the weight decay to
0.05. The stochastic depth drop rates for TransNeXt-Tiny,
TransNeXt-Small, and TransNeXt-Base were set to 0.4, 0.6,
and 0.7, respectively. For the Mask2Former method, we
set the learning rate to 10−4 and the weight decay to 0.05,
with the stochastic depth drop rates for TransNeXt-Tiny,
TransNeXt-Small, and TransNeXt-Base set to 0.3, 0.5, and
0.6 respectively. All models were trained for 160K iterations

2



Model Channels Head dims Blocks MLP ratio Token mixer Window size Pool size

TransNeXt-Micro [48, 96, 192, 384] 24 [2, 2, 15, 2] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]
TransNeXt-Tiny [72, 144, 288, 576] 24 [2, 2, 15, 2] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]
TransNeXt-Small [72, 144, 288, 576] 24 [5, 5, 22, 5] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]
TransNeXt-Base [96, 192, 384, 768] 24 [5, 5, 23, 5] [8, 8, 4, 4] A-A-A-M [3, 3, 3, –] [7, 7, 7, –]

Table 3. The configurations of TransNeXt variants. The value of pool size is calculated at 2242 resolution. A = aggregated attention, while
M = multi-head self-attention.

dataset ImageNet-1K

configuration TransNeXt-Micro/Tiny/Small/Base TransNeXt-Small/Base
task 2242 Pre-training 3842 Fine-tuning

batch size 1024 1024
base learning rate 1e-3 1e-5
learning rate scheduler cosine constant
min learning rate 1e-5 1e-5
training epochs 300 5
warm-up epochs 5 None
warm-up schedule linear None
warm-up learning rate 1e-6 None
optimizer AdamW AdamW
optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999

color jitter factor 0.4 0.4
auto-aug rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1
random-erasing prob. 0.25 0.25
random-erasing mode pixel pixel
mixup α 0.8 0.8
cutmix α 1.0 None
mixup prob. 1.0 1.0
mixup switch prob. 0.5 0.5

stochastic drop path rate 0.15/0.25/0.45/0.6 0.7/0.8
label smoothing 0.1 0.1
gradient clip 1.0 1.0
weight decay 0.05 0.05
exp. mov. avg. (EMA) None None

Table 4. The pre-training and fine-tuning settings of TransNeXt on
ImageNet-1K [5].

with a batch size of 16 on the ADE20K dataset.

D. Ablation Study
D.1. More Discussion on roadmap from PVT to

TransNeXt

Understanding of query embedding: The query em-
bedding exhibits very unique properties. Incorporating
query embedding effectively improved the performance
on ImageNet-1K val and ImageNet-V2 test sets but some-
what reduced performance on ImageNet-A, ImageNet-R,
ImageNet-Sketch test sets; its impact on ImageNet-C was
very weak. Notably, ImageNet-1K val, ImageNet-V2,
and ImageNet-C (a distorted test set of ImageNet-1K val)
adopted the same sampling strategy as the ImageNet-1K
training set, while ImageNet-A, ImagetNet-R, and ImageNet-
Sketch did not follow this principle. We believe these ex-
perimental results reflect that query embedding restricts the
model’s response range to enhance current task performance
rather than affecting generalization to all types of data. Dur-
ing the learning process, the model optimizes this learnable
query token, implicitly learning what the optimal question
for the current task is in each attention layer (from a Visual

Question Answering (VQA) perspective). This perspective
can well explain why in these out-of-distribution test sets,
query embedding has a very weak impact on the performance
of the ImageNet-C test set which uses the same sampling
strategy as the training set. Therefore, we believe there is a
potential trade-off here. In the case of TransNeXt, even with
query embedding, our model still achieved state-of-the-art
model robustness.

Impact of model structure: We adjusted the width and
depth of PVTv2 and the number of attention heads to match
those of TransNeXt-Micro in steps 1 to 3 to avoid the impact
of model structure. During this period, we observed that
a deeper and thinner model significantly enhances perfor-
mance. Reducing the head dimension from 48 to 24 resulted
in only a 0.04% performance change, indicating that the per-
formance gain from increasing attention heads is extremely
limited.

D.2. Detailed Data of Multi-scale Inference

Model Method Inference Size
2242 2562 3202 3842 4802 5122 6402

TransNeXt-Tiny

Normal Mode 84.0 84.3 84.3 84.6 83.8 83.2 81.6
No Length-scaling 84.0 84.3 84.4 84.7 83.7 83.2 80.9
Interpolate RPE 84.0 84.1 84.2 84.3 83.1 82.4 79.5
Linear Mode 84.0 84.0 83.9 84.1 83.0 82.6 80.7

RepLKNet-31B [6] 83.5 83.6 81.0 70.0 21.4 10.1 0.9
SLaK-S [14] 83.8 83.8 83.2 79.6 65.7 63.7 61.4
ConvNeXt-B [17] 83.8 84.2 84.0 83.6 81.6 80.7 77.3

TransNeXt-Mirco Normal Mode 82.5 82.8 82.9 83.1 82.1 81.6 79.3
Linear Mode 82.5 82.5 82.4 82.3 80.9 80.3 77.6

TransNeXt-Small Normal Mode 84.7 84.9 84.9 85.0 84.1 83.8 82.2
Linear Mode 84.7 84.7 84.7 84.9 84.0 83.6 81.7

TransNeXt-Base Normal Mode 84.8 85.1 85.1 85.5 84.7 84.3 82.8
Linear Mode 84.8 85.0 84.9 85.1 84.1 83.5 81.5

Table 5. The table shows the top-1 accuracy of ImageNet-1K of
2242-size trained TransNeXt under normal and linear inference
modes on multiple image input sizes. At the same time, the effects
of length-scaled cosine attention and log-CPB on multi-scale infer-
ence were tested, and the pure convolution model was included for
comparison.

Linear complexity mode for inference: We observe that
in Equations 15 and 16, if we consistently set Hp and Wp as
fixed values independent of the input size, the computational
complexity of both pixel-focused attention and aggregated
attention grows linearly with the length of the input sequence.
In this scenario, both pixel-focused attention and aggregated

3



attention can operate under a linear complexity mode. This
linear mode endows TransNeXt with a computational com-
plexity growth curve close to that of a pure convolutional
network when inferring large-size images. We test the per-
formance changes of 2242-size trained TransNeXt and two
prevalent pure convolutional models at multiple resolutions.
In the default normal mode, Hp and Wp of aggregated atten-
tion are 1

32 of the input image size, while in the linear mode,
Hp and Wp are fixed at 1

32 of the training image size, i.e.,
7× 7.

Results and analysis: As shown in Table 5 and Fig 6, our
TransNeXt-Tiny achieves better multi-scale extrapolation
performance than pure convolutional models in both normal
and linear modes. At the maximum resolution of 6402, the
linear mode produces a performance decay of 0.5% to 1.7%
relative to the normal mode, but such a trade-off still has
advantages over pure convolutional models. As the image
size increases, the performance decay of ConvNeXt-B is
greater than that of TransNeXt’s linear mode. RepLKNet-
31B shows a more exaggerated performance decay, with a
top-1 accuracy of only 0.9% at a resolution of 6402, which
to some extent reveals the limitations of the super-large
convolution kernel scheme. In traditional opinions, pure
convolutional models have better multi-scale applicability
than ViT models, and such experimental results also imply
that this opinion needs to be re-examined.

Impact of length-scaled cosine attention: We compare
the performance of length-scaled cosine attention with reg-
ular scaled cosine attention during multi-scale inference.
According to Fig 6, length-scaling begins to take effect when
the resolution reaches 6402. This implies that when the
sequence length variation in softmax exceeds 8×, longer se-
quence lengths begin to significantly reduce the confidence
of scaled cosine attention.

Extrapolation vs Interpolation for relative position
bias: When a TransNeXt model trained at a resolution of
2242 infers at other sizes, we default to using log-CPB [16]
to extrapolate the B(i,j)∼σ(X) under new resolutions from
spatial relative coordinates ∆(i,j)∼σ(X). However, gener-
ating ∆(i,j)∼σ(X) cannot achieve the same speed as model
inference. This is not a major issue in general because when
the model needs to continuously infer at one or several new
sizes, we only need to pre-calculate these new ∆(i,j)∼σ(X)

and cache them. However, when the new inference resolution
of the model is unknown and needs to change instantly ac-
cording to input size, we need to use traditional interpolation
schemes for relative position bias to interpolate B(i,j)∼σ(X).
As depicted in Fig 6, the input resolution of 6402 results in
a significant performance degradation due to interpolation
for relative position bias, surpassing that of the linear mode.
This underscores the efficacy of log-CPB in extrapolating
position bias. In our evaluation of UperNet with multi-scale
and flip augmentations (Table 14), we present test results

under both interpolation and extrapolation for a balanced
comparison, highlighting the influence of different schemes
on multi-scale performance.

D.3. Ablation on Positional Encoding

Method Params(M) FLOPs(G) Top-1(%)

Remove B(i,j) 28.1 5.6 83.2
Calculate B(i,j)∼ρ(i,j) by log-CPB(∆(i,j)∼ρ(i,j)) 28.2 5.7 83.7
Replace B(i,j)∼ρ(i,j) by Q(i,j)T 28.2 5.7 83.4
Replace log-CPB(∆(i,j)∼σ(X)) by learnable B(i,j)∼σ(X) 28.1 5.6 84.0
TransNeXt-Tiny 28.2 5.7 84.0

Table 6. Ablation experiments on the design of relative position
biases.

Results and analysis: We conducted ablation experi-
ments on the design of the relative position bias used in the
sliding window path and pooling feature path in aggregated
attention, with results shown in Table 6. When we com-
pletely removed the relative position bias B(i,j) used in ag-
gregated attention, the model’s performance significantly de-
creased by 0.8%. This indicates that using depthwise convo-
lution to capture positional information from zero-padding is
insufficient to represent the positional relationships of global
tokens. When we used log-CPB to calculate the relative
position bias of the sliding window, it also resulted in a 0.3%
performance decline. This suggests that due to different
feature scales, the numerical meanings of spatial coordinates
∆(i,j)∼σ(X) in the pooling feature path and ∆(i,j)∼ρ(i,j) in
sliding window path are not exactly the same, highlighting
the importance of using different methods to learn relative
position bias in the two paths. Another consideration is to
use dynamic relative position bias Q(i,j)T calculated by po-
sitional attention to replace B(i,j)∼ρ(i,j), but this resulted
in a significant performance decline of 0.6%. We believe
this is due to inconsistencies in the behavior of the sliding
window path and pooling path. The log-CPB(∆(i,j)∼σ(X))
calculated in the pooling path is static, while Q(i,j)T dy-
namically changes with input, and the two paths are cou-
pled in the same softmax, causing interference with the
mechanism of QKV attention. If we also use a learnable
relative position bias B(i,j)∼σ(X) instead of calculating by
log-CPB(∆(i,j)∼σ(X)) in the pooling path, it does not affect
model performance, but it does cause the model to lose its
ability to extrapolate position biases for unknown size inputs.
This demonstrates the similarity between the relative posi-
tion biases calculated through log-CPB and those directly
learned, also indicating that the log-CPB module is not the
source of TransNeXt’s high performance.

D.4. Ablation on the Design of Convolutional GLU

We conducted ablation experiments on the design of convo-
lutional GLU on the CIFAR-100 dataset using a 2M-sized
model. We designed three optional variants, all using GELU

4



as the activation function:

ConvGLU(X) =(XW1 +B1)⊙
GELU(DWConv(XW2 +B2))

(19)

Type-1(X) =(XW1 +B1)⊙
DWConv(GELU(XW2 +B2))

(20)

Type-2(X) =DWConv(XW1 +B1)⊙
GELU(XW2 +B2)

(21)

Type-3(X) =DWConv((XW1 +B1)⊙
GELU(XW2 +B2))

(22)

The experiments, presented in Table 7, showed that our
convolutional GLU, which follows the design philosophy of
gated channel attention, is the optimal design. In Type-1,
placing DWConv after the gated activation function disrupts
the effect of setting value to zero in the gating branch. In
Type-2, moving DWConv to the value branch causes a sig-
nificant performance drop of 0.7% when a gating branch
with a smaller receptive field controls a value branch with a
larger receptive field, indicating that it is more reasonable to
make gating decisions using a branch with a larger receptive
field. In Type-3, adding a DWConv after the element-wise
dot product result in the GLU module leads to the worst
performance, suggesting that merely adding a DWConv to
enhance local perceptual ability is not key to improving
model performance with convolutional GLU.

Design Params. (M) FLOPs (G) Top-1(%)

ConvGLU 2.3 0.5 82.9
Type-1 2.3 0.5 82.6
Type-2 2.3 0.5 82.2
Type-3 2.3 0.5 82.1

Table 7. Ablation study on the design of Convolutional GLU on
CIFAR-100 [10] dataset.

D.5. Ablation on Window Size

We conducted fast ablation experiments on CIFAR-100 [10]
using a 2M-sized model, results are reported in Table 8. Our
observations indicate that an increase in the window size
does not necessarily lead to an enhancement in the model’s
performance. We believe that these experimental results are
due to the introduction of pooling features provides coarse-
grained global perception abilities, greatly reducing the de-
mand for single queries to perceive the sliding window field.
Moreover, the fine-grained tokens overlap with the coarse-
grained tokens, leading to additional inductive bias. Since
the similarity results between queries and both fine-grained
and coarse-grained tokens compete in the same softmax, this

approach benefits information aggregation in overlapping re-
gions. However, as the window size increases, this inductive
bias may not always be beneficial.

Window Size Params. (M) FLOPs (G) Top-1(%)

3× 3 2.3 0.50 82.9
5× 5 2.3 0.52 82.0
7× 7 2.3 0.54 82.9
9× 9 2.3 0.57 82.5

Table 8. The ablation results of window size. We utilized a 2M-
sized TransNeXt model to conduct experiments on the CIFAR-
100 [10] dataset under various window size settings.

D.6. Ablation on Model Architecture

To further explore the impact of model architecture on per-
formance, we conducted ablation experiments based on
TransNeXt-Micro. We attempted to replace aggregated atten-
tion with multi-head self-attention in stages 1-3 to observe
its impact on model performance. The experimental results
are presented in Table 9. We observed that when we replaced
aggregated attention with multi-head self-attention in stage
3, where the number of blocks is the highest, the model per-
formance decreased by 0.5%. Further replacement in stage 2
led to an additional 0.1% decline in performance. This sug-
gests that our aggregated attention information aggregation
method has advantages over global self-attention. When we
tried to replace aggregated attention in stage 1, the model en-
countered an out-of-memory error on 8× A100s with 80GB
of memory, making it impossible to train the model with this
configuration.

Under a resolution of 2242, 7 × 7 is the smallest size
that can be achieved by integer multiple downsampling. For
this reason, and to maintain consistency with PVTv2, our
model opted for a pooling size of 1

32 at each stage. However,
in stage 4, the input resolution has already been reduced
to 1

32 , rendering the downsampling module of aggregated
attention ineffective. If aggregated attention is forcibly ap-
plied at this stage, features in the sliding window would be
input into softmax twice through the pooling path, leading
to distortion in importance calculation. Consequently, we
selected MHSA in stage 4. At larger resolutions, such as
2562, we can employ a pooling size of 1

64 at each stage to
implement a model that fully utilizes aggregated attention
at all stages. As demonstrated in Table 9, a micro-sized
model that fully employs aggregated attention achieved an
ImageNet-1K accuracy of 82.6% at a resolution of 2562.

D.7. CUDA Implementation

In the native PyTorch [21] implementation, feature extraction
in the sliding window path is achieved through the unfold
operation. The unfold operation involves two stages: 1) ex-

5



Token mixer Input size Window size Pool size Params. (M) FLOPs (G) Top-1(%)

A-A-A-M 2242 3× 3 7× 7 12.8 2.7 82.5
A-A-M-M 2242 3× 3 7× 7 12.2 2.7 82.0
A-M-M-M 2242 3× 3 7× 7 12.2 2.9 81.9
M-M-M-M 2242 3× 3 7× 7 12.2 4.7 OOM

A-A-A-A 2562 3× 3 4× 4 13.1 3.3 82.6

Table 9. Ablation study on model architecture on ImageNet-1K
dataset. OOM means out of memory error.

tracting the tensor within the sliding window through index
access, and 2) explicitly creating a large tensor copy for the
extracted tensor. This explicit feature extraction operation
generates a huge temporary tensor and induces memory ac-
cess pressure, which significantly reduces the model’s speed.
To address this, we introduce a CUDA operator implemen-
tation for calculating QK similarity and aggregating value
by attention weights in the sliding window path. This imple-
mentation circumvents the need for explicit tensor extraction
from the sliding window, thereby markedly enhancing the
model’s throughput and training speed. As shown in Ta-
ble 10, our CUDA implementation provides up to 60.5%
acceleration for inference, up to 103.4% acceleration for
training and saves up to 16.8% of memory consumption for
training.

On the other hand, our current implementation is solely
based on native CUDA, without the introduction of sub-
stantial optimization. Consequently, it does not match the
efficiency of highly optimized dense GPU operators. We
evaluated the throughput of our model on a V100 16G with
FP32 precision at a batch size of 64, following the method-
ology of Swin [15]. As shown in Table 11, our biomimetic
vision implementation significantly outperforms the Fo-
cal Transformer [28] method in terms of both efficiency
and accuracy. Moreover, under similar throughput condi-
tions, our model demonstrates competitive top-1 accuracy on
ImageNet-1K compared to previous state-of-the-art models
such as MaxViT [25], BiFormer [34], and QuadTree [24].
Despite the current throughput of the model still having
a certain gap with models [15, 17] benefiting from dense
operator implementations, the performance of TransNeXt
is anticipated to improve with further engineering efforts.
We are committed to providing more efficient operator op-
timizations in the future to enhance the competitiveness of
TransNeXt.

E. Downstream Experimental Results

6



Model Throughput of inference Duration of training (sec/iter) Memory usage (GB)
CUDA Pytorch Acceleration CUDA Pytorch Acceleration CUDA Pytorch Saving

TransNeXt-Micro 1117 701 +59.3% 0.218 0.401 +83.9% 14.8 17.8 16.8%
TransNeXt-Tiny 756 471 +60.5% 0.315 0.609 +93.3% 23.2 27.3 15.0%
TransNeXt-Small 394 246 +60.2% 0.595 1.161 +95.1% 41.6 49.3 15.6%
TransNeXt-Base 297 186 +59.6% 0.771 1.568 +103.4% 58.1 68.6 15.3%

Table 10. Performance comparison between CUDA implementation and native PyTorch implementation. We measure throughput using a
batch size of 64 on a single V100 with 16GB of memory under FP16, while the iteration time and memory consumption during training are
measured on 8× A100s (PCIe) with a total batch size of 1024 under automatic mixed precision.

Model
#Params.

(M)
FLOPs

(G)
Top-1
(%)

Throughput
(img/s)

Swin-T [15] 28.3 4.5 81.2 790
ConvNeXt-T [17] 28.6 4.5 82.3 779
MaxViT-Tiny [25] 30.9 5.6 83.4 459
TransNeXt-Tiny (Ours) 28.2 5.7 84.0 413
BiFormer-S [34] 25.5 4.5 83.8 396
QuadTree-B-b2 [24] 24.2 4.5 82.7 361
Focal-T [28] 29.1 4.9 82.2 337

Table 11. Comparison of throughput between TransNeXt and its
main competitor models. The throughput results were tested on
a single V100 GPU under FP32 precision with a batch size of 64.
The results are sorted in descending order of throughput.

Backbone
Encoder
size(M)

#Params.
(M) AP b AP b

50 AP b
75 APm APm

50 APm
75

Swin-T [15] 28.3 47.8 43.7 66.6 47.7 39.8 63.3 42.7
PVTv2-B2 [26] 25.4 45.3 45.3 67.1 49.6 41.2 64.2 44.4
FocalNet-T (LRF) [29] 28.6 48.9 46.1 68.2 50.6 41.5 65.1 44.5
Swin-S [15] 49.6 69.1 46.5 68.7 51.3 42.1 65.8 45.2
CSWin-T [7] 23 42 46.7 68.6 51.3 42.2 65.6 45.4
Swin-B [15] 87.8 107.1 46.9 69.2 51.6 42.3 66.0 45.5
PVTv2-B3 [26] 45.2 64.9 47.0 68.1 51.7 42.5 65.7 45.7
InternImage-T [27] 30 49 47.2 69.0 52.1 42.5 66.1 45.8
PVTv2-B5 [26] 82.0 101.6 47.4 68.6 51.9 42.5 65.7 46.0
PVTv2-B4 [26] 62.6 82.2 47.5 68.7 52.0 42.7 66.1 46.1
InternImage-S [27] 50 69 47.8 69.8 52.8 43.3 67.1 46.7
SMT-S [13] 20.5 40.0 47.8 69.5 52.1 43.0 66.6 46.1
BiFormer-S [34] 25.5 45.2 47.8 69.8 52.3 43.2 66.8 46.5
CSWin-S [7] 35 54 47.9 70.1 52.6 43.2 67.1 46.2
FocalNet-S (LRF) [29] 50.3 72.3 48.3 70.5 53.1 43.1 67.4 46.2
BiFormer-B [34] 56.8 76.3 48.6 70.5 53.8 43.7 67.6 47.1
CSWin-B [7] 78 97 48.7 70.4 53.9 43.9 67.8 47.3
InternImage-B [27] 97 115 48.8 70.9 54.0 44.0 67.8 47.4
SMT-B [13] 32 51.7 49.0 70.2 53.7 44.0 67.6 47.4
FocalNet-B (LRF) [29] 88.7 111.4 49.0 70.9 53.9 43.5 67.9 46.7
TransNeXt-Tiny (Ours) 28.2 47.9 49.9 70.5 53.7 43.9 67.4 47.5
TransNeXt-Small (Ours) 49.7 69.3 51.1 72.6 56.2 45.5 69.8 49.1
TransNeXt-Base (Ours) 89.7 109.2 51.7 73.2 56.9 45.9 70.5 49.7

Table 12. Detailed COCO object detection and instance segmen-
tation results using the Mask R-CNN [8] 1× schedule, sorted in
ascending order based on AP b performance.

Model
Encoder
size(M)

#Params.
(M) Epochs scales Pre-trained AP b

ConvNeXt-B [17] 88.6 110 12 4 IN-1K (3842) 52.6
ConvNeXt-L [17] 198 221 12 4 IN-1K (3842) 53.4
TransNeXt-Tiny (Ours) 28.2 47.8 12 4 IN-1K (2242) 55.1
TransNeXt-Tiny (Ours) 28.2 48.1 12 5 IN-1K (2242) 55.7
TransNeXt-Small (Ours) 49.7 69.6 12 5 IN-1K (2242) 56.6
TransNeXt-Base (Ours) 89.7 110 12 5 IN-1K (2242) 57.1

Swin-L [15] 197 218 12 5 IN-22K (3842) 57.2

Table 13. Comparison of object detection results on the COCO
dataset using the DINO method. The data for Swin [15] is sourced
from MMDetection [2], while the data for ConvNeXt [17] is refer-
enced from detrex [22] project. The results are sorted in ascending
order based on the AP b scores.

Model
Encoder
size(M)

#Params.
(M)

Crop
-size Pre-trained mIoU

(%)
+MS
(%)

Swin-T [15] 28.3 60 5122 IN-1K 44.5 45.8
Focal-T [28] 29.1 62 5122 IN-1K 45.8 47.0
ConvNeXt-T [17] 28.6 60 5122 IN-1K 46.0 46.7
FocalNet-T(LRF) [29] 28.6 61 5122 IN-1K 46.8 47.8
Swin-S [15] 49.6 81 5122 IN-1K 47.6 49.5
UniFormer-S [11] 22 52 5122 IN-1K 47.6 48.5
Focal-S [28] 51.1 85 5122 IN-1K 48.0 50.0
Swin-B [15] 87.8 121 5122 IN-1K 48.1 49.7
ConvNeXt-S [17] 50.2 82 5122 IN-1K 48.7 49.6
Focal-B [28] 89.8 126 5122 IN-1K 49.0 50.5
FocalNet-S(LRF) [29] 50.3 84 5122 IN-1K 49.1 50.1
ConvNeXt-B [17] 88.6 122 5122 IN-1K 49.1 49.9
SMT-S [13] 20.5 50.1 5122 IN-1K 49.2 50.2
SMT-B [13] 32 61.8 5122 IN-1K 49.6 50.6
UniFormer-B [11] 49.8 80 5122 IN-1K 50.0 50.8
FocalNet-B(LRF) [29] 88.7 126 5122 IN-1K 50.5 51.4
TransNeXt-Tiny (Ours) 28.2 59 5122 IN-1K 51.1 51.5/51.7
TransNeXt-Small (Ours) 49.7 80 5122 IN-1K 52.2 52.5/52.8
ConvNeXt-B [17] 88.6 122 6402 IN-22K 52.6 53.1
TransNeXt-Base (Ours) 89.7 121 5122 IN-1K 53.0 53.5/53.7

Table 14. A comprehensive comparison of semantic segmentation
results on the ADE20K dataset using the UperNet method. +MS
for evaluation with multi-scale and flip augmentations. In the
context of multi-scale evaluation, TransNeXt reports test results
under two distinct scenarios: interpolation and extrapolation of
relative position bias. The results are sorted in ascending order
based on the mIoU scores.

Model
Encoder
size(M)

#Params.
(M)

Crop
-size Pre-trained mIoU(%)

Swin-S [15] 49.6 68.8 5122 IN-1K (2242) 51.2
Swin-B [15] 87.8 107 6402 IN-1K (2242) 52.4
TransNeXt-Tiny (Ours) 28.2 47.5 5122 IN-1K (2242) 53.4
Swin-B [15] 87.8 107 6402 IN-22K (3842) 53.9
TransNeXt-Small (Ours) 49.7 69.0 5122 IN-1K (2242) 54.1
TransNeXt-Base (Ours) 89.7 109 5122 IN-1K (2242) 54.7

Table 15. Comparison of semantic segmentation results on the
ADE20K dataset using the Mask2Former method. The data for
Swin [15] is sourced from MMSegmentation [3]. The results are
sorted in ascending order based on the mIoU scores.

7



F. Visualization Based on Effective Receptive
Field

We employ the Effective Receptive Field (ERF) [20] method
as a visualization tool to analyze the information aggrega-
tion approach of TransNeXt. In Fig 8, we visualize the
ERF of four encoder stages for eight models: TransNeXt-
Tiny, ConvNeXt-T, Swin-T, CSWin-T, Focal-T, MaxViT-
Tiny, BiFormer-S, and SLaK-T. In Fig 9, we further conduct
a comprehensive ERF visualization comparison on the fourth
stage of the models on ImageNet-A, ImageNet-Sketch, and
ImageNet-C datasets.

Our observations are as follows:

1. As depicted in Fig 8, in the comparative visualization
of ERF for multi-stage outputs, TransNeXt-Tiny outper-
forms seven other models in ERF coverage at the third
stage, exhibiting a more natural and smoother visual per-
ception. This can partially explain TransNeXt’s perfor-
mance advantage in detection and segmentation tasks, as
these tasks rely more heavily on lower-stage outputs.
In contrast, ConvNeXt, Swin, and CSWin exhibit distinct
blocky patterns, which we attribute to artifacts from their
token mixer designs. Despite the presence of multiple
layers, these token mixers are unable to eliminate artifacts
induced by window-based local attention or convolution
kernels, resulting in an unnatural information mixing.
Notably, although Focal Transformer has designed a
unique biomimetic attention mechanism, it is not exempt
from this issue. The method it employs, which is based
on window partitioning, still results in significant blocky
artifacts. These blocky artifacts are also markedly evident
in MaxViT, which utilizes a hybrid CNN-ViT architecture.
Moreover, the grid sampling methodology employed in
MaxViT’s token mixer introduces additional grid artifacts,
further demonstrating the prevalence of these artifact phe-
nomena across different models and designs.
Cutting-edge ViT and convolutional models have made
some improvements in this regard. BiFormer utilizes
a data-driven approach that enables window-based ViT
models to autonomously select window combinations,
thereby circumventing the unnatural traces caused by
manual window design. SLaK employs an ultra-large
convolution kernel scheme to achieve global perception,
thus mitigating the receptive field degradation caused by
depth degradation in convolutional models. We observe
that these methods have to some extent alleviated the
unnatural visual perception caused by manual window
design or convolution kernel stacking in previous ViT and
convolutional models, but the unnatural blocky artifacts
caused by window partitioning and convolution kernel
stacking are still not entirely eliminated.
This observation supports the experimental evidence that
deep networks with residual blocks function as ensem-

bles of shallower networks, highlighting the significance
of a single token mixer in achieving a local-global mod-
eling approach that is more akin to biological vision.
TransNeXt’s ERF represents an information perception
methodology that aligns more closely with biological vi-
sion, achieving a natural visual perception and validating
the effectiveness of its biomimetic design.

2. As shown in Fig 9, in a comprehensive visualization
evaluation across multiple out-of-distribution test sets,
TransNeXt-Tiny demonstrates a more adaptive informa-
tion perception method. Its effective receptive field’s
information perception method undergoes significant
changes with different datasets. This change can be
clearly observed at multiple severity levels on ImageNet-
C. Meanwhile, Swin-T’s ERF exhibits a similar pattern
across all test sets, and ConvNeXt-T’s ERF lies some-
where in between. We believe that a more adaptive ERF
reflects the model’s robustness, and such visualization
comparison results are consistent with the robustness
evaluation results in Table 1.

8



Stage 1 Stage 2 Stage 3 Stage 4

TransNeXt

ConvNeXt

Swin

CSWin

Focal

BiFormer

SLaK

MaxViT

Figure 8. Visualization of the Effective Receptive Field (ERF) on ImageNet-1K validation set. Each visualization is based on an average of
5000 images with a resolution of 224× 224. We visualize the ERFs of four stages for eight models: TransNeXt-Tiny, ConvNeXt-T, Swin-T,
CSWin-T, Focal-T, MaxViT-Tiny, BiFormer-S, and SLaK-T.

9



Figure 9. Visualization of the Effective Receptive Field (ERF) for TransNeXt-Tiny, ConvNeXt-T, and Swin-T on various datasets including
ImageNet-1K validation set (Clean), ImageNet-Adversarial, ImageNet-Sketch, and ImageNet-C. The visual analysis diagrams for ImageNet-
C commence from the second row of the figure. For each corruption mode, we have included visual images with severity levels of 1, 3, and
5. Each ERF image is generated by averaging over 5000 images with a resolution of 224× 224 from each dataset.

10



References
[1] Calibration and integration of peripheral and foveal informa-

tion in human vision. https://cordis.europa.eu/
project/id/676786, 2022. 1

[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue
Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. Mmdetection: Open mm-
lab detection toolbox and benchmark. CoRR, abs/1906.07155,
2019. 2, 7

[3] MMSegmentation Contributors. MMSegmenta-
tion: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-
mmlab/mmsegmentation, 2020. 2, 7

[4] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR
Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pages
3008–3017. Computer Vision Foundation / IEEE, 2020. 2

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June
2009, Miami, Florida, USA, pages 248–255. IEEE Computer
Society, 2009. 3

[6] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Scaling up your kernels to 31×31: Revisiting large
kernel design in cnns. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, pages 11953–11965. IEEE, 2022.
3

[7] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang,
Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo. Cswin
transformer: A general vision transformer backbone with
cross-shaped windows. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2022, New Or-
leans, LA, USA, June 18-24, 2022, pages 12114–12124. IEEE,
2022. 7

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask R-CNN. IEEE Trans. Pattern Anal. Mach.
Intell., 42(2):386–397, 2020. 7

[9] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep networks with stochastic depth. In
Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part IV, pages 646–661. Springer, 2016. 2

[10] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009. 5

[11] Kunchang Li, Yali Wang, Peng Gao, Guanglu Song, Yu Liu,
Hongsheng Li, and Yu Qiao. Uniformer: Unified trans-
former for efficient spatial-temporal representation learning.
In The Tenth International Conference on Learning Represen-

tations, ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net, 2022. 7

[12] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: common objects in context. In
Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V, pages 740–755. Springer, 2014. 2

[13] Weifeng Lin, Ziheng Wu, Jiayu Chen, Jun Huang, and Lian-
wen Jin. Scale-aware modulation meet transformer. CoRR,
abs/2307.08579, 2023. 7

[14] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao
Xiao, Boqian Wu, Tommi Kärkkäinen, Mykola Pechenizkiy,
Decebal Constantin Mocanu, and Zhangyang Wang. More
convnets in the 2020s: Scaling up kernels beyond 51x51
using sparsity. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net, 2023. 3

[15] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
2021 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2021, Montreal, QC, Canada, October 10-17,
2021, pages 9992–10002. IEEE, 2021. 2, 6, 7

[16] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong,
Furu Wei, and Baining Guo. Swin transformer V2: scaling
up capacity and resolution. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 11999–12009.
IEEE, 2022. 4

[17] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022, pages 11966–11976. IEEE, 2022. 2, 3, 6, 7

[18] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with warm restarts. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. 2

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. 2

[20] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S. Zemel.
Understanding the effective receptive field in deep convolu-
tional neural networks. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 4898–4906, 2016. 8

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

11

https://cordis.europa.eu/project/id/676786
https://cordis.europa.eu/project/id/676786
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8024–8035, 2019. 5

[22] Tianhe Ren, Shilong Liu, Feng Li, Hao Zhang, Ailing Zeng,
Jie Yang, Xingyu Liao, Ding Jia, Hongyang Li, He Cao,
Jianan Wang, Zhaoyang Zeng, Xianbiao Qi, Yuhui Yuan, Jian-
wei Yang, and Lei Zhang. detrex: Benchmarking detection
transformers, 2023. 7

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2818–
2826. IEEE Computer Society, 2016. 2

[24] Shitao Tang, Jiahui Zhang, Siyu Zhu, and Ping Tan. Quadtree
attention for vision transformers. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net, 2022. 6, 7

[25] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan C. Bovik, and Yinxiao Li. Maxvit:
Multi-axis vision transformer. In Computer Vision - ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23-
27, 2022, Proceedings, Part XXIV, pages 459–479. Springer,
2022. 6, 7

[26] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvtv2:
Improved baselines with pyramid vision transformer. CoRR,
abs/2106.13797, 2021. 2, 7

[27] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi
Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng
Li, Xiaogang Wang, and Yu Qiao. Internimage: Exploring
large-scale vision foundation models with deformable convo-
lutions. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pages 14408–14419. IEEE, 2023. 7

[28] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai,
Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal self-attention
for local-global interactions in vision transformers. CoRR,
abs/2107.00641, 2021. 6, 7

[29] Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao.
Focal modulation networks. In NeurIPS, 2022. 7

[30] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon
Oh, Youngjoon Yoo, and Junsuk Choe. Cutmix: Regular-
ization strategy to train strong classifiers with localizable
features. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, pages 6022–6031. IEEE, 2019. 2

[31] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018.
2

[32] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,

The Thirty-Second Innovative Applications of Artificial In-
telligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 13001–
13008. AAAI Press, 2020. 2

[33] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler,
Adela Barriuso, and Antonio Torralba. Semantic understand-
ing of scenes through the ADE20K dataset. Int. J. Comput.
Vis., 127(3):302–321, 2019. 2

[34] Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang, and
Rynson W. H. Lau. Biformer: Vision transformer with bi-
level routing attention. CoRR, abs/2303.08810, 2023. 6,
7

12


	. Equivalent Form of Pixel-Focused Attention
	. Comparative Analysis of Human Vision and Attention Visualization
	. Detailed Settings
	. Configurations of TransNeXt Variants
	. Training Settings for ImageNet-1K
	. Training Settings for Downstream Tasks

	. Ablation Study
	. More Discussion on roadmap from PVT to TransNeXt
	. Detailed Data of Multi-scale Inference
	. Ablation on Positional Encoding
	. Ablation on the Design of Convolutional GLU
	. Ablation on Window Size
	. Ablation on Model Architecture
	. CUDA Implementation

	. Downstream Experimental Results
	. Visualization Based on Effective Receptive Field

