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A. Dual-scale Visual Descriptive Text Prompt

The specific descriptions of dual-scale visual descrip-
tive text prompts for renal cell carcinoma and lung cancer
are shown in Figure S1 and Figure S2, respectively. Note
that three experienced pathologists thoroughly examined
the text prompts generated by GPT-3.5, and found them rel-
atively correct and detailed.

B. Description of Datasets

The data statistics are reported in Table S1. The specific
descriptions of our collected datasets are as follows:

• TIHD-RCC: This is the in-house dataset consisting of
renal cell carcinoma slides collected by our research
team. All the slides were stained with hematoxylin and
eosin (H&E) and scanned by a KF-PRO-005 digital
slice scanner at 20 × magnification with 0.5 µm/pixel
resolution. There are 480 slides with slide-level sub-
typing labels.

• TCGA-RCC: To verify ViLa-MIL on multi-center
data, we collected 639 renal cell carcinoma slides from
TCGA.1 The data in TIHD-RCC and TCGA-RCC are
divided into three categories: clear cell (CCRCC),
papillary (PRCC), and chromophore renal cell carci-
noma (CRCC).

• TCGA-Lung: To verify the generalizability of ViLa-
MIL across multiple cancer types, we also col-
lected 658 lung cancer slides from TCGA. All the
slides were annotated with slide-level subtyping la-
bels. This dataset includes two subtypes: lung ade-
nocarcinoma (LUAD) and lung squamous cell carci-
noma (LUSC).

*Co-corresponding authors.
1https://portal.gdc.cancer.gov.

C. Implementation Details
Additional descriptions of implementation details are as

follows. We adopt Adam optimization with a learning rate
of 1 × 10−4 and weight decay of 1 × 10−5. The minimum
training epoch number is 80, and the early stopping strategy
is adopted if the accuracy does not continuously increase
for 20 epochs. The batch size is 1. During training, all the
methods utilize the same seed. ViLa-MIL and all the base-
lines are implemented with PyTorch and the PyG library [1]
on a workstation with eight NVIDIA 2080Ti GPUs.

D. Description of Compared Methods
The specific description for each compared method is as

follows:

• Max-pooling: Max-pooling is a baseline method that
utilizes the max-pooling operator to generate the slide
prediction.

• Mean-pooling: Mean-pooling is a baseline method
that utilizes the mean-pooling operator to aggregate all
the patch features as the slide features.

• ABMIL [4]: ABMIL proposes an attention-based ag-
gregation method to generate the slide features by
measuring the importance of each instance.

• CLAM [7]: CLAM proposes a global pooling operator
trained for weakly-supervised slide-level classification
tasks. CLAM-SB and CLAM-MB denote the single-
attention-branch and multi-attention-branch versions
of CLAM, respectively.

• TransMIL [8]: TransMIL proposes to utilize the self-
attention mechanism to explore the global relations be-
tween patches.

• DSMIL [5]: DSMIL utilizes the multi-scale patches
as the input and proposes a non-local attention-based
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Cancer Type Kidney Lung

Dataset TIHD-RCC TCGA-RCC TCGA-Lung

Number of WSIs 480 639 658

Data Split
Training 192 255 264
Validation 144 192 197
Test 144 192 197

Number of Patches 5× 429,402 607,817 490,977
10× 1,670,362 2,359,471 1,903,894

Table S1. Data statistics.

fusion method.

• GTMIL [10]: GTMIL employs a graph representa-
tion to model the WSI data and utilizes a vision Trans-
former to generate slide features.

• DTMIL [9]: DTMIL proposes a double-tier MIL
framework by introducing the concept of pseudo-bags.

• IBMIL [6]: IBMIL proposes an interventional training
method based on the backdoor adjustment.

E. Comparisons with SOTA under Different
Shots

To compare our ViLa-MIL with the current state-of-the-
art WSI classification methods under different shots, we se-
lect four MIL-based methods (i.e., CLAM-MB [7], Trans-
MIL [8], GTMIL [10] and DTMIL [9]). The experiment
results are summarized in Figure S3. As the number of
shots increases, the performance of nearly all methods im-
proves. Specifically, with fewer support samples (i.e., 4-
shot or 8-shot), our ViLa-MIL achieves more significant
gains compared with all the other methods. This indi-
cates that with the help of our dual-scale visual descrip-
tive text prompt, ViLa-MIL can capture discriminative mor-
phological patterns better for classification under the few-
shot setting. With more support samples (i.e., 32-shot or
64-shot), the performance of traditional MIL-based meth-
ods increases substantially; however, our ViLa-MIL still
demonstrates better (or at least comparable) performance on
all three datasets. Note that we have additionally conducted
the experiment in a fully supervised setting. Specifically,
compared to DTMIL, ViLa-MIL still achieves a compara-
ble performance improvement of 0.8% and 0.7% in AUC
and F1, respectively.

F. Interpretability Analysis

This section elaborates on the generation process of vi-
sualization results in Figure 5 of the main text. For the
MIL-based models, we generate the visualization results by
binarizing the attention maps. For our ViLa-MIL, to keep

consistency with the other MIL-based methods, we only vi-
sualize the high-resolution visualization result. Specifically,
the prototype-guided attention map (i.e., QhK

⊤
h /

√
d ∈

RNh×Np ) is first calculated. This map captures the cross-
attention between patches and prototypes. Each row in the
prototype-guided attention map represents a patch, while
each column denotes a prototype. To establish the rela-
tionships between patches and prototypes, we assign each
patch to the prototype with the highest cross-attention value.
This grouping process ensures that each patch is associated
with a specific prototype. Next, we employ the attention
map Ah to select the prototype with the highest attention
value. This prototype is deemed the most representative.
Finally, we consider all the patches that are grouped into
the cancer prototype as cancer patches, while the remain-
ing patches are taken as normal. Note that to obtain the
prediction result, MIL-based methods need to carefully se-
lect a threshold to binarize the attention map. For differ-
ent WSIs, the best threshold may be different, it is hard
to obtain the most optimal prediction result for each case.
Our ViLa-MIL avoids this problem by utilizing the belong-
ing relations between patches and prototypes based on the
prototype-guided attention map.

G. The Setting of Each Module in Ablation Ex-
periment

The module ablation settings in the ablation experiment
are as follows:

• ABMIL + Low-scale: The attention-based method is
utilized to aggregate the low-scale patch features as the
baseline. Only the 5× patches and low-scale visual
descriptive text prompt are utilized.

• ABMIL + High-scale: The attention-based method is
utilized to aggregate the high-scale patch features as
the baseline. Only the 10× patches and high-scale vi-
sual descriptive text prompt re utilized.

• Patch Decoder + Low-scale: Compared with the
“ABMIL + Low-scale”, the attention-based patch fea-
ture aggregation method is replaced with our proposed



Method AUC F1 ACC

Instance-level + Max Pooling 60.4±6.0 39.8±7.0 45.3±5.1
Instance-level + Top-K 74.9±6.4 57.0±7.6 59.4±7.6
Instance-level + Mean Pooling 78.0±2.5 60.4±5.4 61.2±5.3
ViLa-MIL 84.3±4.6 68.7±7.3 68.8±7.3

Table S2. Results (presented in %) of different similarity measure-
ments on the TIHD-RCC dataset under 16-shot setting.

prototype-guided patch feature decoder.

• Patch Decoder + High-scale: Compared with the
“ABMIL + High-scale”, the attention-based patch fea-
ture aggregation method is replaced with our proposed
prototype-guided patch feature decoder.

• Patch Decoder + Multi-scale: Compared with “Patch
Decoder + Low-scale”, the 10× patches and the high-
scale visual descriptive text prompt are also utilized.

• ViLa-MIL: This is our complete framework proposed
in this work. Compared with “Patch Decoder + Multi-
scale”, the context-guided text decoder is also intro-
duced for both scales.

H. Effect of Text Prompt
To intuitively compare different text prompts, we present

the visualization result of the “Class-name-replacement”
template and our ViLa-MIL. As shown in Figure S4, com-
pared with the “Class-name-replacement” template (the
third column), our ViLa-MIL (the fourth column) achieves
better localization results of the tumor. Since the “Class-
name-replacement” template lacks the diagnosis-related
prior, it easily fails to locate the tumor regions for sub-
typing with the supervision of few-shot labels. Our ViLa-
MIL maintains a strong consistency with ground truth,
which demonstrates that the dual-scale visual descriptive
text prompt helps the model learn the discriminative mor-
phological patterns from the WSI. Specifically, as shown
in Figures S4(d) and S4(e), the low-scale visualization re-
sult locates the whole tumor structure well, and the high-
scale visualization result presents more fine-grained de-
tails. From the patches with the highest similarity scores
to CCRCC, we can observe that the low-scale patches show
solid mass, well-circumscribed, and homogeneous texture,
and the high-scale patches present clear cytoplasm, promi-
nent nucleoli, and round or oval nuclei. Three experienced
pathologists also confirm that these highlighted patches
capture diagnosis-related patterns for each class.

I. Effect of Similarity Measurements
To verify the effect of different similarity measurements,

we compare our bag-level similarity with several instance-
level methods. Specifically, for the instance-level simi-

Method AUC F1 ACC

Feature Summation 79.3±2.9 62.7±4.3 65.1±2.3
Logit Summation 84.3±4.6 68.7±7.3 68.8±7.3

Table S3. Result (presented in %) of different multi-scale fusion
methods on the TIHD-RCC dataset under 16-shot setting.

larity calculation method, based on our ViLa-MIL, each
patch feature directly calculates the similarity with the text
prompt features, and then several aggregation methods are
utilized to obtain the final slide-level similarity. As shown
in Table S2, ViLa-MIL achieves the best results under all
three metrics because the small patch contains limited vi-
sual information, which cannot match various kinds of text
descriptions well.

J. Effect of Multi-scale Fusion Methods

To verify the effect of different multi-scale fusion meth-
ods, we compare our adopted logit summation with the fea-
ture summation method. In logit summation, the similar-
ity between image and text features is calculated on each
scale separately, and then the similarities of both scales are
added together. Feature summation means that two-scale
image and text features are summed together first, and then
the similarity is calculated between the fused image and
text features. As shown in Table S3, the logit summation
method achieves better results compared with the feature
summation method. Due to disparities in visual features
at different scales and their corresponding textual descrip-
tions, the feature summation method cannot achieve proper
alignment for each scale, resulting in a decrease in perfor-
mance.

K. Effect of Hyper-parameters

To verify the effect of hyper-parameters on the model’s
performance, we conduct a series of ablation studies on the
TIHD-RCC dataset. The results are summarized in Figure
S5. The best results are achieved with 16 prototypes (i.e.,
Np = 16). Too few prototypes cannot represent various
kinds of visual features sufficiently. On the other hand,
with too many prototypes, the redundant prototypes do not
contribute to improving the model’s performance but in-
crease computational complexity. For the number of learn-
able text vectors M in the text prompt, the best value is 16.
Fewer text vectors cannot effectively transfer the model to
the pathological dataset. Conversely, employing more text
vectors increases the number of parameters the model needs
to learn. In the few-shot scenario, optimizing the model
based on these limited data becomes challenging.



L. Effect of CLIP as the backbone
To verify the effect of domain-related VLMs on the

model’s performance, we replaced CLIP with PLIP and
QuiltNet and conducted the experiments on the TIHD-RCC
dataset in the 16-shot setting. Specifically, compared with
CLIP (84.3%), PLIP (85.7%) [2] and QuiltNet (85.2%) [3]
exhibit AUC improvements of 1.4% and 0.9 %. This in-
dicates that VLMs pre-trained on the domain-specific data
contribute to enhancing model performance further.
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Figure S1. Dual-scale visual descriptive text prompt for the renal cell carcinoma. By replacing the placeholder “class name” with the spe-
cific category label, such as Clear Cell Renal Cell Carcinoma, Papillary Renal Cell Carcinoma, and Chromophobe Renal Cell Carcinoma,
the frozen LLM can generate the dual-scale visual descriptive text prompt that corresponds to the multi-scale WSIs.

Figure S2. Dual-scale visual descriptive text prompt for the lung cancer. By replacing the placeholder “class name” with the specific
category label, such as Lung Adenocarcinoma and Lung Squamous Cell Carcinoma, the frozen LLM can generate the dual-scale visual
descriptive text prompt that corresponds to the multi-scale WSIs.



Figure S3. Performance comparison with different shots (4-/8-/16-/32-/64-shot) on TIHD-RCC, TCGA-RCC, and TCGA-lung datasets.
N-shot denotes that each class has N training samples.



Figure S4. Comparison of our dual-scale visual descriptive text prompt with the class-name-replacement text prompt. Two cases (i.e.,
CCRCC and CRCC) are randomly selected from the TCGA-RCC dataset to show the results of different text prompts. For each case, (a)
is the original WSI; (b) is the corresponding ground truth (GT) tumor annotation; (c) and (d) are the visualization results by utilizing the
“Class-name-replacement” template at low- and high-scale, respectively; (d) and (e) are the visualization results by utilizing our dual-scale
visual descriptive text prompt at low- and high-scale, respectively. In the right half of the image, patches with the highest similarity are
also visualized at low- and high-scale, respectively.

Figure S5. Impact of hyper-parameters: the number of prototypes Np (left) and the number of learnable vectors M (right).


