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Abstract

This is the Supplemental Materials for the paper: ”ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adap-
tive Enhancement for Low-Light Images”. Initially, our VILNC dataset is introduced in Section 1. Besides, Section 2 offers
computational efficiency and more visual comparisons, featuring low-light images with real noise, varying brightness levels
from the VILNC dataset, and low-light images with synthetic noise. It is obvious that the proposed ZERO-IG achieves the
best performance, further verifying our superiority. Finally, additional ablation experiments are detailed in Section 3.

1. VILNC Dataset

(a) Indoor Dark I (b) Indoor Dark II (c) Indoor Dark III (d) Indoor Light (e) Outdoor Dark (f) Outdoor Light

Figure 1. Sample images in our VILNC dataset. Each row in the first three columns contains low-light images at three different brightness
levels from the same indoor scene. The fourth column has the corresponding indoor normal-light reference images. The last two columns
feature low-light images and their corresponding normal-light reference images from outdoor scenes.

Creating datasets for Low-Light Image Enhancement (LLIE) training and evaluation poses significant challenges. Most
existing datasets are derived by synthesizing images or altering camera settings. Frequently, their capacity to accurately
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represent real-world conditions is limited. Methods trained on synthetic images may introduce artifacts and color bias when
processing real-world images. Furthermore, images captured by adjusting exposure time and ISO settings often lack the
complete details and especially noise present in genuine low-light scenes.

Our new Varied Indoor Luminance & Nightscapes Collection (VILNC) dataset comprises 500 real-world low-light images
captured using a Canon EOS 550D, including 460 indoor and 40 outdoor scenes. Figure 1 displays a selection of images
from this dataset. Specifically, the indoor segment features low-light images at three distinct brightness levels. We adjusted
the Mijia Desk Lamp 1S to a color temperature of 6496, and brightness levels of 10, 30, and 50, to simulate varying degrees
of low-light. Images captured in full-light conditions serve as normal-light reference images. The ISO value was set to 400
and the exposure time to 1. In the outdoor portion, night-time images are classified as low-light. The ISO for these images is
set to 1600 with an exposure time of 1. Daytime images, used as normal-light references, have an ISO of 100 and an exposure
time of 1/80. To prevent movement and ensure consistent framing, a tripod was used to stabilize the camera. Our VILNC
dataset is available at https://github.com/Doyle59217/ZeroIG.

2. More Experimental Results
2.1. Computational Efficiency

Table 1 shows the comparisons of running time and model size across methods, averaged over 300 random images with a
size of 600×400×3 from the LOL-v2 [12] dataset.

Table 1. Comparisons of running time (RT) and model size (SIZE) on LOL-v2 [12] dataset.

Metrics
Supervised Learning Methods Unsupervised Learning Methods

URtinex-Net LLFlow SNR-aware KinD++ SCI PairLIE RUAS ZERO-IG

RT(s)↓ 0.2853 0.2231 0.1927 0.1725 0.0005 0.0065 0.0121 0.0035
SIZE(K)↓ 340.11 4970.3 39135 9632.1 0.2580 341.72 3.438 86.572

2.2. Visual Comparison on Low-light Images with Real Noise

Figure 2 shows visual comparisons on our VILNC dataset. Compared to other methods, ZERO-IG consistently achieves
stable enhancement results for real low-light images across various brightness levels. Figures 3, 4 and 5 additionally provide

(a) Input (b) LLFlow [9] (c) PairLIE [4] (d) RUAS [7] (e) SNR-aware [11] (f) SCI [8] (g) ZERO-IG

Figure 2. Visual comparisons on our VILNC dataset. The first three rows show the enhancement effects of indoor low-light scenes across
various brightness levels. The last row shows the enhancement effect of an outdoor low-light scene.

https://github.com/Doyle59217/ZeroIG


(a) Input (b) URtinexNet [10] (c) LLFlow [9] (d) PairLIE [4] (e) SCI [8] (f) ZeroDCE++ [6]

(g) KinD++ [13] (h) SNR-aware [11] (i) RUAS [7] (j) ZERO-IG-IE-Net (k) ZERO-IG (l) Ref

Figure 3. Visual comparison on a real noisy low-light image from the SIDD [1] dataset.

(a) Input (b) LLFlow [9] (c) PairLIE [4] (d) SCI [8] (e) ZeroDCE++ [6]

(f) KinD++ [13] (g) SNR-aware [11] (h) RUAS [7] (i) ZERO-IG-IE-Net (j) ZERO-IG

Figure 4. Visual comparison on a real noisy low-light image from the LIME [5] dataset.

(a) Input (b) LLFlow [9] (c) PairLIE [4] (d) SCI [8] (e) ZeroDCE++ [6]

(f) KinD++ [13] (g) SNR-aware [11] (h) RUAS [7] (i) ZERO-IG-IE-Net (j) ZERO-IG

Figure 5. Visual comparison on a real noisy low-light image from the SID [3] dataset.

visual comparisons of real-world low-light images from the SIDD [1], LIME [5] and SID [3] datasets. It can be seen that our
method outperforms others in terms of image brightness, contrast, color fidelity, and noise reduction.

2.3. Visual Comparison on Low-light Images with Synthetic Noise

To further demonstrate ZERO-IG’s effectiveness, we introduced Gaussian, Salt-and-Pepper, Uniform, and Poisson noise
types into the MIT-Adobe FiveK [2] dataset, respectively. Gaussian noise simulates random deviations in pixel values caused
by factors such as thermal noise from electronic devices. We used a fixed Gaussian noise level σ of 10, indicating the standard
deviation in the pixel value range [0, 255]. Salt-and-Pepper noise simulates data loss or signal interference in digital image
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Figure 6. Visual comparisons on low-light images with synthetic noise. We provide PSNR/SSIM of each method w.r.t. clean ground-truth
image. The best results are highlighted in red.

transmission. The value of some pixels in the low-light image were randomly set to be the highest (represented by white, i.e.
”salt”) or the lowest (represented by black, i.e. ”pepper”).

Uniform noise models the uniformly distributed random errors from sensor or environmental interference during image
acquisition. We added uniformly distributed random noise, with an intensity range of -10 to 10, to all pixels of the low-
light image. Poisson noise, often linked to image brightness, simulates random fluctuations in photon counts. A Poisson
distributed noise matrix was generated based on the count of unique pixel values, and then added to the original image. As
shown in Figure 6, our method effectively enhances low-light images affected by four types of synthetic noise, excelling in
both visual and metric assessments.

3. Additional ablation experiments
Figure 7(a) illustrates the overall adjustment loss, showing the impact of various brightness coefficients α in IE-Net. En-
larging all pixels equally improves low-light image brightness but may lead to under-enhancement or over-exposure. Figure
7(b) displays the pixel-by-pixel adjustment loss, highlighting varying enhancement amplitudes for each pixel at different
well-exposedness levels E in IE-Net. Figure 7(c) illustrates the principle behind the color loss in RD-Net. The color loss
evaluates dominant color differences between images by eliminating texture and content comparisons. It ensures the denoised
image retains the same color distribution as the noisy image, tolerating minor mismatches. Figure 7(d) presents our method’s
intermediate results, including the approximately equal to the noise-unaffected illumination S̃, noise-contaminated reflection
R, binary denoising indicator D, noise n, and the final enhanced image R̂.

We study the effect of the average brightness YH of the normal-light image in the overall adjustment loss and the well-
exposedness level E in the pixel-by-pixel adjustment loss on the enhancement performance of our method. Five YH values
(i.e., 0.3, 0.4, 0.5, 0.6, 0.7) were used to train our network, resulting in the models ZERO-IGYH0.3 to ZERO-IGYH0.7.
Similarly, five E values (i.e., 0.5, 0.6, 0.7, 0.8, 0.9) led to models ZERO-IGE0.5 to ZERO-IGE0.9. Observations from Figure
8 and 9 show that ZERO-IGYH0.5 and ZERO-IGE0.7 achieve pleasing brightness. Consequently, ZERO-IGYH0.5 and ZERO-
IGE0.7 were chosen as the final ZERO-IG model due to their better visual results.
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Figure 7. (a) Different brightness coefficients α in the overall adjustment loss. (b) Different well-exposedness levels E in the pixel-by-pixel
adjustment loss. (c) Principle of the color loss. Rb and R̂b represent the blurred versions of R and R̂. (d) Intermediate results of ZERO-IG.

(a) Input (b) ZERO-IGYH0.3 (c) ZERO-IGYH0.4 (d) ZERO-IGYH0.5 (e) ZERO-IGYH0.6 (f) ZERO-IGYH0.7

Figure 8. Visual comparison among the results generated by the ZERO-IG trained using different brightness of the normal-light image,
YH , in the overall adjustment loss.

(a) Input (b) ZERO-IGE0.5 (c) ZERO-IGE0.6 (d) ZERO-IGE0.7 (e) ZERO-IGE0.8 (f) ZERO-IGE0.9

Figure 9. Visual comparison among the results generated by the ZERO-IG trained using different well-exposedness level, E, in the pixel-
by-pixel adjustment loss.
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