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Overview

In this supplementary material, we provide detailed descriptions of DITTO that could not be handled in the main paper
due to space constraints. In Sec. 1, we describe more details necessary for implementing our work, such as detailed network
architecture and hyperparameters. Additional ablation studies related to DITTO are available in Sec. 2. We provide additional
experiment results in Sec. 3.

1. Implementation Details

Additional details of the DI TTO network architecture are available in Sec. 1.1, and hyperparameters that are used for training
DITTO are available in Sec. 1.2.

1.1. Network Architecture Details

In this section, we provide additional network architecture details of our work. DITTO mainly consists of the dual latent
encoder and the integrated implicit decoder (IID). The dual latent encoder can be subdivided into a point encoder and an
UNet with dual latent layers (DLLs). An illustration of the dual latent encoder is available in Fig. 1. We describe details of
each of the modules below. In addition, we provide layer-level details in Table 4.
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Figure 1. Detailed illustration of our dual latent encoder.

Point Encoder. The point encoder receives input point cloud P, and generates point latents C. This module then produces
grid latents T by projecting C onto either triplanes or voxels. While extracting C, we employ a stack of four FKAConv lay-
ers [2] instead of the conventional architecture based on PointNet [6], called as local pooled PointNet. Local pooled PointNet
generates point features by directly encoding the point coordinates, but this layer processes each point independently, without
considering the relationship between points. In contrast, simply employing a FKAConv-based encoder similar to POCO [1]
gives additional performance gains. This improvement is further reinforced by DLL and IID due to their emphasis on point
latents.

Dual Latent Layer. Our DLL focuses on refining point latents. To analyze what DLL learns, we visualize point features
in Fig. 2. The features of DITTO exhibit clear boundaries between different parts of the object. For instance, the body of
the airplane has a distinct color compared to its wings, and similarly, the bottom and side parts of the chair and the gun have
different colors. In contrast, most of the point features of ALTO [10] have similar colors. From this difference, we infer
that DITTO appears to implicitly learn semantic information, such as planes and their direction or curvature. We expect that
these point features can help provide a clear surface boundary between two surfaces that are adjacent yet not in contact. We
would like to note that DITTO considers point-level geometry with a point feature extractor, such as the proposed DSPT,
while ALTO handles point latents using MLPs that account for each point independently.
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We provide a visual comparison of our DLL, along with the architecture design of ALTO (see Fig. 3). Our design of
DLL mainly differs in two aspects: the DSPT layers for point features refinement and the skip-connection from point latents
to grid latents. ALTO outputs refined grid latents T’ that are directly projected from the point latents. These grid latents
have many empty cells, hindering feature extraction of grid latents. To address this problem, we find that simply creating a
residual connection between grid latents and those projected from point latents can enhance performance (see our additional
ablation study in Sec. 2.1). Additionally, we incorporate a convolutional layer to reduce sparseness of grid latents projected

from point latents.

(a) Point features of DITTO (b) Point features of ALTO [10]

Figure 2. Visualization of point features. We visualize the of the refined point features C. These features are colored by reducing feature
dimension into three channels by using principal component analysis (PCA).
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Figure 3. Visual comparison of DLL and a layer of ALTO. Key differences are highlighted with red outlines and red arrows.

Dynamic Sparse Transformer. 11D receives point coordinates P and their features C, and enhances the point features. When
dividing the point features into windows {Cl"”‘d}le, we recycle the sorting indices in each DSPT layer to reduce computation
load. Concretely, since both the number and the coordinates of points remain constant throughout all processes of DITTO,
we initially calculate the sorted indices of point coordinates and reuse them in every DSPT layer. This method effectively
reduces the computation needed for recalculating sorted indices.

UNet with Dual Latent Layers. Our UNet architecture is similar to traditional UNet [4, 9], but each layer is replaced
with the proposed DLL module. Our UNet has three down DLLs, a mid DLL, and three up DLLs (see Fig. 1). The down
DLL can optionally downsample the grid latents using MaxPooling, while the up DLL can upsample them using transposed
convolution. Specifically, within our UNet, the second and third down DLLs downsample the grid latents, whereas the first
and second up DLLSs upsample them.

Integrated Implicit Decoder. IID receives the refined latents and estimates occupancy by comprehensive consideration of
these latents. Note that, while Table 4 describes IID with a single query point q for convenience, IID actually processes
multiple query points Q in parallel.

1.2. Hyperparameters
The detailed hyperparameters can be found in Table 1.

2. Ablation Studies

We conduct ablation studies to demonstrate effectiveness of each module of DITTO. Specifically, we perform ablation studies
on the point encoder, a residual connection, and the number of windows for DSPT in Sec. 2.1, and Sec. 2.2, respectively.



Table 1. Detailed hyperparameters of DITTO.

. . Object (3K) Object (1K)  Object(0.3K) Scene (10K) Scene (3K)

Notation Meaning Triplane Triplane Triplane Triplane Voxel Triplane Voxel
Epoch 1,000 1,000 1,000 2,500 2,500 2,500 2,500
Learning rate le-4 le-4 le-4 le-4 le-4 le-4 le-4

Batch size 32 32 32 32 16 32 16

R Feature resolution 64 64 64 128 64 128 64

d Channel size 32 32 32 32 32 32 32

L # of windows in DSPT 25 25 25 20 20 25 25

K # of neighbor points in IID 32 32 32 32 32 32 32
M # of query points per training iteration 2,048 2,048 2,048 2,048 2,048 2,048 2,048

2.1. Ablation Study on Residual Connection

To demonstrate the impact of residual connections between grid latents and those projected from point latents, we conduct
an ablation study comparing ALTO with and without this residual connection (see Table 2). The results suggest that only a
simple addition of residual connection can significantly enhance performance. Moreover, a convolutional layer can improve
performance by reducing the sparsity of grid latents projected from point latents.

Table 2. Ablation study on residual connection. Training and inference are conducted on the Synthetic Rooms dataset with 10K input
points and 0.005 noise level.

# of windows ‘ IoU1T Chamfer-L; | NC1 F-score 1
ALTO (triplane) 0.895 0.37 0.910 0.974
ALTO + residual connection 0.904 0.36 0.915 0.976
ALTO + residual connection + conv layer | 0.907 0.36 0.915 0.977

2.2. Ablation Study on DSPT

We conduct an ablation study to determine the appropriate number of windows for DSPT. The results can be found in Table 3.
The results demonstrate robustness across various window numbers. However, the current window number (L = 20) shows
slightly improved performance.

Table 3. Ablation study on the number of windows in our DSPT. The training and inference are conducted on the Synthetic Rooms
dataset with 10K input points and 0.005 noise level.

# of windows ‘ IoU1 Chamfer-L; | NC7 F-score

40 0.929 0.34 0.930 0.984
25 0.930 0.34 0.930 0.983
20 (DITTO) 0.931 0.33 0.931 0.984
10 0.929 0.34 0.930 0.984

3. Additional Experiment Results
In this section, we provide additional qualitative results in Sections 3.1, 3.2, 3.3.

3.1. Additional Results on ShapeNet

Quantitative Results. We provide additional object-level 3D surface reconstruction results on ShapeNet [3]. Detailed per-
category quantitative results are presented with different input point densities: 3K input points in Table 5, 1K input points
in Table 6, and 0.3K input points in Table 7, all at a consistent noise level of 0.005. Each of these tables is a per-category
extension to Table 1 in the main paper. DI TTO outperforms previous methods in most categories. Note that, while ALTO [10]
outperforms POCO [1] in most of metrics, POCO shows higher F-score than ALTO when dealing with 3K input points. In
contrast, DITTO demonstrates superior performance in most metrics and categories.

Qualitative Results. We present additional object-level 3D reconstruction results on ShapeNet. The result meshes are
visualized in Fig. 4 for 3K input points at 0.005 noise level. DITTO shows high-fidelity reconstruction especially thin and



intricate structures such as the legs of the chairs and the tables (second and third rows). Enhanced details are also notable,
such as the boundary interface between two parts of the chair (second row).

To demonstrate robustness for sparsity, we visualize qualitative results in sparse case: 1K input points in Fig. 5, 0.3K input
points in Fig. 6 with consistent noise level. Even with sparse point clouds, DITTO shows superior reconstruction quality in
intricate shapes, such as the bookshelf (first row in Fig. 5) and underside of the car (third row in Fig. 5). Moreover, the results
of DITTO generate more clear shape details, such as the chair (second row in Fig. 5).

3.2. Additional Results on Synthetic Rooms

We provide additional qualitative results for scene-level 3D surface reconstruction on the Synthetic Rooms dataset [8]. We
visualize the results in Fig. 7 for 10K input points with 0.005 noise level. Result meshes of DITTO exhibit clear surface
boundaries in intricate cases, such as the bookshelf (box in the left scene), and the lamps (boxes in the middle and right
scenes). In addition, due to the precise detail reconstruction capability of DITTO, it can successfully reconstruct fine details
of chairs (boxes in the middle and right scenes) and lamps (boxes in the middle scene).

To demonstrate the performance with sparse input point clouds, we visualize the results for 3K input points in Fig. 8. Even
with sparse point clouds, DITTO outperforms previous methods. DITTO is the only method that successfully reconstructs
the chairs (boxes in the left and middle scenes). In addition, DITTO is the most successful method in reconstructing the
bookshelves (boxes in the right scene).

3.3. Additional Results on ScanNet-V2

We present additional qualitative results on ScanNet-v2 [5] to demonstrate generalization performance. Consistent with the
main paper, we test on this dataset using models pre-trained with the Synthetic Rooms dataset (see Fig. 9). DITTO success-
fully reconstructs the tables and sofas (boxes in the left and middle scenes). For the right scene, our method successfully
reconstructs the tables and chairs, even though every previous method fails to generate the scene accurately. These results
demonstrate the robustness of DITTO in handling complex geometries and details, even in the dataset that is not used during
the training phase.



Table 4. Layer-level network module architecture designs of DITTO.

Layer Name Input Output

Point Encoder

Input / Output P (N x 3) C(N><d)T(3><R><R><d)
FKAConv layer P (N x 3) C (N xd)

FKAConv layer P (N x 3),C (N x d) C (N xd)

FKAConv layer P (N x 3),C (N x d) C (N xd)

FKAConv layer P (N x 3),C (N x d) C (N xd)

Quantization P (N x3),C (N xd) T (3xRxRxd)

DLL

Input/Output T (3 x R x R x diy),P (N x 3),C (N x diy) T (3% R/2 % R/2 X dow),C' (N X dow)
ConvNet T (3% R X R X di) T (3% R X R X doy)

Conv2d T (3x Rx R X dip) T (3 x R X R X dow)

Sum T (3x RX R xdow),T (3xRxRX doy) T (3x R X R x doy)
3D-Aware-Conv T (3 x R x R X doy) T’ (3 x R X R X dou)

Linear C (N X din) C (N X dou)

Grid-to-Point T (3 x RX R X dow),P (N x 3) (N X dou)

MLP (N X dout) (N X dout)

Sum (N X dowt),C (N X dout) C (N X dou)

X-AxisDSPT ~ P(N x 3),C (N x dow) C (N X dow)

Y-Axis DSPT PN x3),C (N X doy) C (N X doy)

Z-Axis DSPT P(N % 3),C (N X doy) C' (N X dow)

Point-to-Grid P(N % 3),C" (N x dou) (3 X R x R X dou)

Conv2d (3X RX R X doy) (83X RX R X doy)

Sum (3X RX R X doy), T (3 x RXx R X doy) T’ (3 x R X R X dou)

Pooling T (3 x RX R X do) T (3 x R/2 x R/2 X doy)

UNet with DLLs

Input / Output P (N x3),C(Nxd), T(3xRxRxd) T (3x Rx Rxd),C (N xd)
DLL (down) P (N x3),C(Nxd), T(3xRxRxd) C'(Nxd), T (3x Rx Rxd)
DLL (down) P (N x3),C(Nxd), T(3xRxRxd) C' (N x2d),T (3x R/2x R/2 x 2d)
DLL (down) P (N x3),C (N x 2d),T (3 x R/2x R/2 x 2d c’ (N x 4d), T’ (3 x R/4 x R/4 x 4d)
DLL (mid) P (N x3),C (N x 4d), T (3 x R/4 x R/4 x 4d C' (N x 8d), T (3 x R/4 x R/4 x 8d)
DLL (up) P (N x3),C(Nx8d),T (3xR/4x R/4x8d C' (N x4d), T (3 x R/2 x R/2 x 4d)
DLL (up) P (N x3),C(N x4d), T (3x R/2x R/2x 4d C' (N x 2d), T/(3><R><R><2d)
DLL (up) P (N x3),C(N x2d),T(3x Rx R x2d) C'(Nxd), T (3x Rx Rxd)
DSPT

Input/Output P (N x 3),C (N x d) C (N x d)

sort P (N x3),C (N xd) (N x d)

split (N x d) {Crm iy E

Self-attention {CpayE {Cym Y B

split™! e, (N x d)

sort™1 (N x d) C (N xd)

Layer norm C (N xd) C (N xd)

Linear C (N xd) C (N x 4d)

ReLU C (N x 4d) C (N x 4d)

Linear C (N x 4d) C (N xd)

1D

Input / Output T@BxRxRxd),P(Nx3),C(Nxd),q (1)

Interpolation T3 xRxRxd),q(3) (d)

Linear (d) zo (2d)

KNN a(3),P (N x3),C (N xd) P9 (K x 3),C% (K x d)
interpolation T (3x Rx Rxd),Pa(K x3) T4 (K x d)

concat Ca(K x d), T (K x d) Z9 (K x 2d)

Self-attention {zd,..., 2%} (K+1) x 2d),{q,p}, ..., pE} (( zg (2d)

Self-attention {zd,..., 2%} (K+1) x 2d),{q,p}, ..., PE} (( zg (2d)

Self-attention {zg,..., 2%} (K+1) x 2d),{q,p}, ..., p%} (( zg (2d)

Self-attention {zg,...,2%} (K+1) x 2d),{q,p?, ..., p%} (( zg (2d)

Linear 2 (2d) o(1)




Table 5. Object-level quantitative comparison on ShapeNet with 3K input points with noise level 0.005.

IoU 1 Chamfer-L; |
Method ONet [7] ConvONet [8] POCOT[1] ALTO[10] DITTO (ours) | ONet[7] ConvONet[8] POCO[I] ALTO[10] DITTO (ours)
Airplane 0.734 0.849 0.902 0.908 0.935 0.64 0.34 0.23 0.22 0.19
Bench 0.682 0.830 0.865 0.890 0.919 0.67 0.35 0.28 0.26 0.23
Cabinet 0.855 0.940 0.960 0.965 0.976 0.82 0.46 0.37 0.34 0.31
Car 0.830 0.886 0.921 0.924 0.943 1.04 0.75 041 0.43 0.36
Chair 0.720 0.871 0.919 0.925 0.948 0.95 0.46 0.33 0.32 0.29
Display 0.799 0.927 0.956 0.962 0.973 0.82 0.36 0.28 0.27 0.25
Lamp 0.546 0.785 0.877 0.868 0.914 1.59 0.59 0.33 0.34 0.28
Loudspeaker 0.826 0.918 0.957 0.953 0.970 1.18 0.64 041 041 0.35
Rifle 0.668 0.846 0.897 0.898 0.925 0.66 0.28 0.19 0.19 0.16
Sofa 0.865 0.936 0.963 0.966 0.976 0.73 0.42 0.30 0.29 0.26
Table 0.739 0.888 0.924 0.937 0.956 0.76 0.38 0.31 0.29 0.27
Telephone 0.896 0.955 0.968 0.977 0.982 0.46 0.27 0.22 0.21 0.20
Vessel 0.729 0.865 0.927 0.924 0.948 0.94 0.43 0.25 0.26 0.22
mean 0.761 0.884 0.926 0.931 0.949 0.87 0.44 0.30 0.30 0.27
NC 1 F-Score 1
Method ONet [7] ConvONet [8] POCO[I] ALTO[10] DITTO (ours) | ONet[7] ConvONet[8] POCO [I] ALTO[10] DITTO (ours)
Airplane 0.886 0.931 0.944 0.949 0.958 0.829 0.965 0.994 0.992 0.997
Bench 0.871 0.921 0.928 0.941 0.950 0.827 0.964 0.988 0.991 0.996
Cabinet 0.913 0.956 0.961 0.967 0.970 0.833 0.956 0.979 0.982 0.989
Car 0.874 0.893 0.894 0.917 0914 0.747 0.849 0.946 0.940 0.963
Chair 0.886 0.943 0.956 0.959 0.968 0.730 0.939 0.985 0.985 0.994
Display 0.926 0.968 0.975 0.976 0.981 0.795 0.971 0.994 0.993 0.997
Lamp 0.809 0.900 0.929 0.924 0.942 0.581 0.892 0.975 0.962 0.984
Loudspeaker 0.903 0.939 0.952 0.951 0.961 0.727 0.892 0.964 0.955 0.976
Rifle 0.849 0.929 0.949 0.949 0.960 0.818 0.980 0.998 0.996 0.999
Sofa 0.928 0.958 0.967 0.971 0.975 0.832 0.953 0.989 0.987 0.994
Table 0.917 0.959 0.966 0.968 0.975 0.824 0.967 0.991 0.990 0.996
Telephone 0.970 0.983 0.985 0.987 0.988 0.930 0.989 0.998 0.998 0.999
Vessel 0.857 0919 0.940 0.940 0.952 0.734 0.931 0.989 0.982 0.992
mean 0.891 0.938 0.950 0.954 0.957 0.785 0.942 0.984 0.981 0.988




Table 6. Object-level quantitative comparison on ShapeNet with 1K input points with noise level 0.005.

IoU 1 Chamfer-L; |
Method ONet [7] ConvONet [8] POCOT[1] ALTO[10] DITTO (ours) | ONet[7] ConvONet[8] POCO[I] ALTO[10] DITTO (ours)
Airplane 0.748 0.825 0.850 0.872 0.908 0.59 0.39 0.32 0.29 0.23
Bench 0.702 0.798 0.804 0.856 0.891 0.62 0.40 0.38 0.30 0.26
Cabinet 0.862 0.926 0.936 0.953 0.964 0.76 0.50 0.46 0.37 0.35
Car 0.837 0.867 0.878 0.901 0.921 0.99 0.83 0.60 0.50 0.45
Chair 0.736 0.837 0.867 0.894 0.922 0.89 0.55 0.44 0.39 0.33
Display 0.812 0911 0.930 0.946 0.960 0.78 0.41 0.34 0.31 0.28
Lamp 0.567 0.741 0.807 0.820 0.877 1.44 0.68 0.50 0.50 0.35
Loudspeaker 0.831 0.899 0.923 0.933 0.951 1.14 0.72 0.54 0.48 0.42
Rifle 0.680 0.801 0.850 0.862 0.892 0.63 0.36 0.27 0.25 0.20
Sofa 0.873 0.921 0.937 0.952 0.964 0.69 0.47 0.38 0.33 0.30
Table 0.757 0.858 0.880 0913 0.937 0.70 0.44 0.38 0.33 0.30
Telephone 0.897 0.946 0.953 0.968 0.975 0.46 0.29 0.26 0.23 0.21
Vessel 0.736 0.840 0.880 0.893 0.923 091 0.51 0.37 0.33 0.27
mean 0.772 0.859 0.884 0.905 0.926 0.82 0.50 0.40 0.35 0.32
NC 1 F-Score 1
Method ONet [7] ConvONet [8] POCO[I] ALTO[10] DITTO (ours) | ONet[7] ConvONet[8] POCO [I] ALTO[10] DITTO (ours)
Airplane 0.894 0.922 0.920 0.933 0.949 0.850 0.946 0.970 0.976 0.990
Bench 0.882 0911 0.902 0.925 0.940 0.849 0.943 0.956 0.979 0.990
Cabinet 0.925 0.949 0.945 0.957 0.964 0.852 0.939 0.951 0.972 0.978
Car 0.904 0.885 0.867 0.889 0.904 0.763 0.819 0.868 0912 0.934
Chair 0.893 0.931 0.930 0.946 0.960 0.753 0.902 0.943 0.965 0.982
Display 0.930 0.961 0.962 0.970 0.976 0.805 0.956 0.976 0.984 0.991
Lamp 0.820 0.885 0.895 0.905 0.929 0.606 0.845 0.924 0.926 0.964
Loudspeaker 0914 0.929 0.928 0.936 0.950 0.740 0.863 0.908 0.926 0.951
Rifle 0.859 0916 0.928 0.936 0.949 0.828 0.957 0.984 0.987 0.994
Sofa 0.937 0.950 0.950 0.960 0.969 0.846 0.932 0.961 0.974 0.985
Table 0.918 0.950 0.949 0.961 0.970 0.842 0.947 0.964 0.979 0.989
Telephone 0.972 0.980 0.979 0.984 0.986 0.940 0.983 0.990 0.994 0.996
Vessel 0.866 0.906 0.913 0.923 0.940 0.740 0.899 0.952 0.961 0.979
mean 0.901 0.929 0.928 0.940 0.949 0.801 0.918 0.950 0.964 0.975




Table 7. Object-level quantitative comparison on ShapeNet with 0.3K input points with noise level 0.005.

IoU 1 Chamfer-L; |

Method ONet [7] ConvONet [8] POCOT[1] ALTO[10] DITTO (ours) | ONet[7] ConvONet[8] POCO[I] ALTO[10] DITTO (ours)
Airplane 0.760 0.782 0.744 0.825 0.857 0.57 0.48 0.57 0.39 0.32
Bench 0.716 0.743 0.707 0.801 0.835 0.60 0.50 0.56 0.39 0.34
Cabinet 0.867 0.900 0.889 0.927 0.941 0.73 0.52 0.58 0.46 0.43
Car 0.834 0.843 0.817 0.867 0.885 0.99 0.76 0.83 0.67 0.61
Chair 0.736 0.787 0.776 0.840 0.871 0.89 0.67 0.71 0.52 0.45
Display 0.817 0.885 0.878 0.917 0.931 0.76 0.47 0.49 0.38 0.35
Lamp 0.567 0.663 0.681 0.747 0.808 1.38 1.02 0.93 0.76 0.61
Loudspeaker 0.827 0.870 0.867 0.901 0.916 1.16 0.78 0.79 0.64 0.59
Rifle 0.691 0.757 0.742 0.801 0.832 0.61 0.43 0.45 0.35 0.30
Sofa 0.872 0.898 0.893 0.926 0.938 0.69 0.52 0.53 0.42 0.38
Table 0.758 0.813 0.794 0.868 0.894 0.72 0.52 0.57 042 0.37
Telephone 0.916 0.939 0.927 0.952 0.960 0.41 0.31 0.33 0.27 0.25
Vessel 0.748 0.797 0.795 0.846 0.872 0.85 0.63 0.60 0.47 0.40
mean 0.778 0.821 0.808 0.863 0.882 0.80 0.59 0.61 0.47 043

NC 1 F-Score 1

Method ONet [7] ConvONet [8] POCO[I] ALTO[10] DITTO (ours) | ONet[7] ConvONet[8] POCO [I] ALTO[10] DITTO (ours)
Airplane 0.897 0.901 0.867 0914 0.931 0.864 0.902 0.867 0.938 0.962
Bench 0.878 0.886 0.864 0.906 0.920 0.860 0912 0.882 0.947 0.966
Cabinet 0.916 0.931 0.917 0.943 0.953 0.856 0.916 0.896 0.943 0.957
Car 0.875 0.864 0.835 0.873 0.887 0.757 0.810 0.766 0.850 0.879
Chair 0.889 0.905 0.885 0.923 0.940 0.754 0.850 0.833 0.910 0.941
Display 0.926 0.947 0.938 0.956 0.964 0.813 0.926 0.916 0.957 0.967
Lamp 0.813 0.853 0.834 0.875 0.902 0.618 0.771 0.781 0.857 0.908
Loudspeaker 0.897 0911 0.897 0916 0.932 0.737 0.832 0.819 0.871 0.899
Rifle 0.863 0.890 0.883 0.909 0.925 0.838 0.919 0918 0.952 0.968
Sofa 0.928 0.935 0.924 0.946 0.956 0.846 0.906 0.899 0.941 0.956
Table 0.917 0.933 0.917 0.945 0.957 0.839 0.913 0.894 0.947 0.966
Telephone 0.970 0.975 0.970 0.978 0.982 0.942 0.975 0.971 0.984 0.988
Vessel 0.860 0.879 0.867 0.898 0.914 0.758 0.850 0.851 0.909 0.935
mean 0.895 0.908 0.892 0.922 0.931 0.806 0.883 0.869 0.924 0.940




(a) GT Mesh (b) Input points (c) ConvONet [8]

(d) POCO [1] (e) ALTO [10] (f) DITTO (ours)

Figure 4. Object-level 3D reconstruction comparison on ShapeNet [3] with 3K input points and noise level 0.005.



(a) GT Mesh (b) Input points (c) ConvONet [8]
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(d) POCO [1] (e) ALTO [10] (f) DITTO (ours)

Figure 5. Object-level 3D reconstruction comparison on ShapeNet [3] with 1K input points and noise level 0.005.



(a) GT Mesh (c) ConvONet [8]

(d) POCO [1] (e) ALTO [10] (f) DITTO (ours)

Figure 6. Object-level 3D reconstruction comparison on ShapeNet [3] with 0.3K input points and noise level 0.005.



(a) Input points
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(b) ConvONet [8]

(c) POCO [1]

(d) ALTO [10]

(e) DITTO (ours)

Figure 7. Scene-level 3D reconstruction results on the Synthetic Rooms dataset [8] with 10K input points and noise level 0.005.



(b) ConvONet [8]

(c) POCO [1]

(d) ALTO [10]

(e) DITTO (ours)

Figure 8. Scene-level 3D reconstruction results on the Synthetic Rooms dataset [8] with 3K input points and noise level 0.005.



(b) ConvONet [8]

(e) DITTO (ours)

Figure 9. Scene-level 3D reconstruction results on the ScanNet-v2 dataset [5].
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