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1. Implementation Details
We set the number of channels of each feature vector to C = 256. Also, the number M of score pivots and the number N of
input images are fixed to be 101 and 18, respectively, except that M = 6 and N = 6 for the BID dataset [3], whose scores
range from 0 to 5. We resize the short side of an image to 384 while maintaining the aspect ratio. For the FLIVE dataset [18],
we halve an image both horizontally and vertically. We train the proposed QCN for 100 epochs. We set the learning rate to
5 × 10−5 initially and decrease it using the cosine annealing learning rate scheduler. Specifically, we first linearly increase
the learning rate from 0 to 5× 10−5 for 5 epochs. Then, we decrease it using the scheduler for 95 additional epochs. We do
not do data augmentation during training.

2. Network Architecture
The structure of each component in CT is detailed in Figure S-1. In Figure S-1(a), (b), (c), and (d), the FSU, FPCU, PSU,
and PFCU modules are presented, respectively. Note that ‘c FC’ denotes the fully connected layer with c output channels and
‘LN’ means the layer normalization [1]. In FSU, masked attention operations in (5) in the main paper are implemented by
masked multi-head attention layers with 8 heads. Also, in FPCU, PSU, and PFCU, attention operations in (6), (8), and (9) in
the main paper are implemented by multi-head attention layers with 8 heads.
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Figure S-1. Detailed structure of each component in CT: (a) FSU, (b) FPCU, (c) PSU, and (d) PFCU. Here, s⃝ denotes the channel split of
a feature vector.



3. More Experimental Results
3.1. More Results on KonIQ10K

In the main paper, to compare the performance on KonIQ10K [10], we randomly split the entire dataset into train and test
sets with a ratio of 8:2. On the other hand, in Table S-1, we adopt the fixed train and test split from [10]. We see that, in this
split setting as well, the proposed QCN outperforms the conventional algorithms.

Table S-1. Comparison results on the fixed split for KonIQ10K.

Algorithm SRCC PCC

DeepRN [17] 0.867 0.880
DeepBIQ [2] 0.907 0.911
KonCept512 [10] 0.921 0.937
MUSIQ [11] 0.924 0.937

Proposed QCN 0.931 0.942

3.2. Sensitivity to Auxiliary Images

To estimate the quality score of a test image, QCN takes it together with N − 1 auxiliary images, which are selected from the
training set. Specifically, we first split the entire score range uniformly to N − 1 intervals, and randomly select one image
from each interval. QCN yields slightly different results due to this randomness; it is not very sensitive to the selection of the
auxiliary images.

Table S-2 summarizes 10 evaluation results on each of the BID [3], CLIVE [5], KonIQ10K [10], SPAQ [4], and FLIVE [18]
datasets. Note that the deviations are negligible.

Table S-2. Multiple evaluation results on BID, CLIVE, KonIQ10K, SPAQ, and FLIVE. The means and standard deviations of SRCC and
PCC are reported.

BID CLIVE KonIQ10K SPAQ FLIVE

SRCC 0.89342 ± 0.00069 0.87791 ± 0.00101 0.93393 ± 0.00002 0.92280 ± 0.00001 0.64358 ± 0.00002
PCC 0.88926 ± 0.00072 0.89341 ± 0.00113 0.94513 ± 0.00004 0.92761 ± 0.00004 0.74147 ± 0.00023

3.3. Sensitivity to Score Pivot Initialization

Table S-3 lists the results of four different score pivot parameter initialization schemes on the KonIQ10K dataset. Initializing
all score pivot parameters to zero results in ineffective network training. Hence, the performance degrades significantly.
Meanwhile, the other three schemes yield comparable results. Since the truncated normal method achieves the best results,
we adopt it as the default option.

Table S-3. Comparison of the performances of four different initialization schemes on the KonIQ10K dataset.

Zeros Truncated normal Kaiming normal [8] Xavier normal [6]

SRCC 0.515 0.934 0.933 0.931
PCC 0.510 0.945 0.945 0.943



3.4. Storage Costs

Table S-4 lists memory requirements for the feature vectors of auxiliary images for the score estimation. The memory
requirements are negligible, only 8.83KB for both datasets.

Table S-4. Memory requirements for the feature vectors of auxiliary images for the KonIQ10K and SPAQ datasets.

KonIQ10K SPAQ

Memory requirement 8.83KB 8.83KB

3.5. Performance According to M

Table S-5 compares the results according to the number M of score pivots on the KonIQ10K dataset. The best results are
achieved at M = 101, which is used as the default option.

Table S-5. Comparison of the performances according to M on the KonIQ10K dataset.

M 26 51 101 201 401

SRCC 0.931 0.933 0.934 0.933 0.930
PCC 0.943 0.944 0.945 0.944 0.939

3.6. Performance According to Encoder Backbone

We adopted ResNet50 [9] as an encoder. Table S-6 lists the results using ResNet50 and three different encoders on KonIQ10K.
Even with these different encoders, QCN outperforms the state-of-the-arts.

Table S-6. Comparison of the performances according to encoder structure on the KonIQ10K dataset.

Encoder ResNet50 [9] ResNet101 [9] ConvNext-B [13] Swin-S [12]

SRCC 0.934 0.938 0.944 0.945
PCC 0.945 0.948 0.954 0.956

3.7. Model Complexity

Table S-7 compares the complexity of the proposed QCN with those of conventional algorithms. We see that QCN requires
a similar number of parameters to the conventional algorithms. However, QCN provides excellent performances on various
IQA datasets, as listed in Table 1 in the main paper.

Table S-7. Comparison of model complexities.

HyperIQA [15] MUSIQ [11] TReS [7] Re-IQA [14] Proposed QCN

Parameters (M) 27 27 152 47 30



3.8. Embedding Space Visualization

Figure S-2 visualizes how feature vectors and score pivots for CLIVE and SPAQ are aligned through the three CTs. The
t-SNE [16] is used for the visualization. In both datasets, they are gradually arranged and separated according to their scores,
as the update goes on.
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Figure S-2. t-SNE visualization [16] of feature vectors and score pivots in each CT for the CLIVE and SPAQ datasets. We depict the scores
of the score pivots and the feature vectors in red and blue shades, respectively.
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