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– Supplementary Material –

In this supplementary material, we provide following additional information:
• More Discussion on Advantages of Coarse-to-Fine Approach
• Details of Voting, Dynamic Convolution, MLP Heads, Mask Assembly and Training
• Comparison between RID and AABB
• Additional ablation results
• Additional results on S3DIS dataset
• Additional discussion on ScanNet results
• Additional discussion on Soft Margin Loss
• Implementation of findSector(.) function
• Runtime Analysis
• Additional qualitative results

1. More Discussion on Advantages of Coarse-to-Fine Approach
Despite the two limitations, (1) False negative error propagation from the coarse detection and (2) Excessive instance size
estimation of AABB, the main advantage of the coarse-to-fine approach comes with the coarse detection that circumvents
the class-imbalance problem. For example, in kernel-based and Transformer-based methods, each binary mask has the size
of an entire point cloud, and only foreground points of an instance must be classified as 1. As the dimensions of instances
are usually much smaller than the dimensions of an entire point cloud, this results in a significant class imbalance problem,
where almost all points must be classified as background. In ScanNetV2, the average ratio of foreground points in the point
cloud is around 2.3%. Despite the learning-based methods, such as focal loss and dice loss, to deal with the class imbalance,
it is arguably always advantageous to provide input with less class imbalance. The coarse-to-fine approaches sidestep this
issue using coarse detection, where the prediction is simpler and does not require fine binary classification. The coarse
detection just needs to be around the instance. The refinement stage then only needs to consider the points inside the coarse
detection without most of the background points further away, significantly alleviating the class-imbalance problem. Based
on this advantage of the coarse-to-fine approach, our method RID and RPM tries to cut the error propagation from the coarse
detection by using the coarse detection as a soft reference rather than the hard reference in the existing works.

2. Details of Voting
Similar to [12, 14], we use two set-abstract layers with the following structures. The first set-abstraction layer has a ball-query
radius of 0.2 and chooses 1024 points with farthest-point sampling (FPS). The maximum number of neighboring points each
point considers is set to 32. The grouped features are the point locations(R1024×3) and the corresponding features(R1024×D)
from the encoder. Here, D is 32, as specified in the main paper. The grouped features are then fed into MLP, which consists
of 3 blocks, each with Convolution, BatchNorm and ReLU. The output is followed by max-pooling to produce 64 channels
of features from the 1024 sub-sampled points. We also add a residual connection using the initial features from the encoder
to prevent the gradient vanishing problem.

The second set-abstraction layer has 0.4 and 256 for ball-query radius and number of points for FPS, respectively. Follow-
ing the same procedure as the set-abstraction layer from the first sampling, the MLP layer outputs 32 channels of features for
256 sub-sampled points, which corresponds to F2 in the main paper. Here, the output feature dimension of the set-abstraction
is reduced to 32 to minimize the memory consumption during training. Empirically, we have not found meaningful differ-
ences in performance by setting the feature dimensions higher, such as 64 and 128.
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3. Details of Dynamic Convolution
As mentioned in Implementation Detail(Section 4.3) of the main paper, we implement Dynamic Convolution for the per-point
offset prediction(RPM) with two layers with 32 hidden dimensions. Similar to [5, 14], an MLP consisting of two blocks with
Convolution, BatchNorm, and ReLU as one block generates weights W ∈ RK×H for each instance by taking vote features
F2 ∈ RK×D as input. Here, H is decided by the parameters such as hidden dimension and input feature dimension for
dynamic convolution. W is then used to convolve F2 and the predicted instance center Fcenter ∈ RK×3, as follows:

Fδ = Conv ([F2, Fcenter];W ) , (1)

where Conv is implemented as two convolutional layers which have hidden feature dimensions of 32 from W . Here, [, ]
refers to concatenation.

4. Details MLP based Heads
There are four MLPs used as final prediction heads: (1) CenterHead (2) RayHead (3) Classification and (4) Confidence. All
of them take F2 ∈ RK×D as input.

Each MLP consists of two blocks of Convolution, BatchNorm and ReLU. For the third block, we only use the convolution
as an inference output. The momentum is set to 0.1 for all BatchNorm. All MLPs for heads have the same hyper-parameters,
except for the output dimensions. For example, classification head outputs scores for each class (RK×Nclass ), and confidence
head outputs confidence score( RK×1). Here, Nclass stands for the number of classes.

5. Details of Mask Assembly and Finding Misclassified Points

As mentioned in Section 3.3.2 of the main paper, the final mask is assembled by comparing if the addition of p(i)s and f
(i)
δ is

smaller than f
(̃i)
ray, as in Equation 12. Here, the addition of p(i)s and f

(i)
δ is performed by adding f

(i)
δ only to r coordinate of

p
(i)
s ∈ RNp×3 among (r, θ, φ) because θ and φ coordinates for each point remain constant within their respective sector as

specified in Section 3.3.2(line 259-262). This operation is the same for finding the misclassified points in Equations 4, 5 and
8 in the main paper.

During the inference time, the same operation is applied to generate the binary masks for all K votes, Fmask ∈ RK×Np ,
using K point clouds in spherical coordinates, Ps ∈ RK×NP×3, centered to predicted instance centers Fcenter ∈ RK×3

in cartesian coordinates. The runtime analysis, including the finding of the index ĩ using findSector(.), is illustrated in
Section 13 of this supplementary material.

6. Details of Training
In Section 3.4 of the main paper, we illustrate how the loss for each vote is calculated. As mentioned in Implementation
Detail(Section 4.3), this loss is calculated for the number of votes mapped to the ground-truth instance with the batch size
10. Therefore, the final loss Ltotal is the averaged value of:

Ltotal =
1

NbatchNinstNdupl

Nbatch∑
b=1

N
(b)
inst Ndupl∑
k=1

L(b,k), (2)

where Nbatch, Ninst, and N
(b)
inst stand for batch size, a total number of ground-truth instances in the batch, and a number of

ground-truth instances in bth point cloud in the batch, respectively. Ndupl is the number to duplicate ground-truth instances,
and L is the loss for each vote mapped to a ground-truth instance. As mentioned in Section 3.4 and 4.3 of the main paper,
Nbatch and Ndupl are set to 10 and 4 respectively.

7. Comparison between RID and AABB
The common characteristic of existing works with the coarse-to-fine approach is based on AABB. As one of the problems
mentioned in the main paper, the excessive instance size estimation by AABB brings a burden to the refinement stage,
as a bigger size box could include more background points to be refined. Therefore, tighter coarse detection is always
advantageous for the refinement step, improving the overall performance of the system. As mentioned in Section (3.3.1) of



Figure 1. Visually comparing AABB and RID with different configurations of Nθ and Nφ for various instances, such as bed, bathtub,
chair, desk, sofa, toilet, and bookshelf. A larger signal-to-noise ratio(SNR) means fewer background points inside the coarse detection,
leading to higher precision for the refinement stage and thus improving the overall system performance.

the main paper, RID offers tighter boundaries for instances than AABB. To compare AABB and RID, we measure Signal-to-
Noise Ratio for spaces occupied by foreground points compared to the spaces occupied by coarse detections. Specifically, we



create a 3D grid, where each grid cell has 0.1m× 0.1m× 0.1m of space, and count two numbers: (1) Ncoarse, the number of
grid cells inside a coarse detection. (2) Nforeground, the number of grid cells occupied by foreground points. We then acquire
SNR by dividing Nforeground with Ncoarse, so that the SNR effectively reflects how tight the boundary is. For example, the
higher SNR indicates a tighter boundary, leading to better performance by making the refinement step simpler with fewer
background points. Figure 1 shows the comparisons of AABB and RID with different Nθ and Nφ for various instances in
ScanNetV2 dataset. As can be seen, depending on the type of instance, the SNR increases from minimum 12% to maximum
50% from AABB when using 3/3 for Nθ/Nφ(the second column), suggesting the advantage of RID over AABB. Increasing
Nθ/Nφ from 3/3(column 2) to 5/5(column 3) leads to 22% higher SNR in average. The average SNR improves around 12%
by increasing Nθ/Nφ from 5/5(column 3) to 7/7(column 4).

8. Additional Ablation

Nθ/Nφ mAP AP50 AP25

1/1 59.6 77.1 85.3
2/2 60.0 77.7 86.1
3/3 60.6 78.4 87.1
4/4 61.2 80.0 89.3
5/5 62.3 79.9 88.2
6/6 60.6 78.5 88.2

Table 1. Impact of Nθ and Nφ on Scan-
NetV2 validation set

Nθ/Nφ mAP AP50 AP25

2/8 61.1 78.2 86.9
4/6 61.9 79.5 88.5
5/5 62.3 80.0 89.3
6/4 62.5 80.5 89.4
8/2 61.7 78.9 88.1

Table 2. Impact of Nθ and Nφ

on ScanNetV2 validation set

AABB RID LmcLsc mAP AP50 AP25

✓ 36.5 57.6 77.4
✓ 51.6 69.4 86.8
✓ ✓ 58.5 77.6 87.5
✓ ✓ 56.5 77.1 87.1
✓ ✓ ✓ 62.3 79.9 88.2

Table 3. Impact of each component on
ScanNetV2 validation set

8.1. More Results on Nθ and Nφ

In this section, we report additional results of varying Nθ and Nφ. With the same setting as the ablation in the main paper, we
fix the backbone and RPM with Lmc and Lsc and only change Nθ and Nφ. Table 1 shows the results by having the identical
Nθ and Nφ and Table 2 shows additional results by varying Nθ and Nφ. As can be seen, decreasing or increasing Nθ and Nφ

to an extreme, such as 2/8 and 8/2, results in a performance drop. This is expected, as too few sectors in one axis increases
the complexity. Having 6/4 of Nθ and Nφ shows a slight improvement of 0.2 in mAP, suggesting that increasing the number
of sectors in the horizontal axis is slightly more helpful than increasing the number of sectors in the vertical axis.

8.2. More Result with AABB

In this section, we report an additional quantitative result of using AABB. For this experiment, we fix the backbone and
replace RID and RPM with an MLP that predicts AABB offsets to the mapped ground truth as AABB prediction in [1, 8, 17].
Table 3 shows the performance of only using AABB. Using only RID gains 15.1 higher mAP compared to AABB, suggesting
that RID circumvents the excessive size estimation issues of AABB and offers tighter boundaries of instances.

9. Additional results on S3DIS dataset
Table 4 and Table 5 show the quantitative results on S3DIS Area 5 and 6 fold cross-validation from published results. In Area
5, our proposed method outperforms the second-best-performing method with margins of 2.8, 2.39, and 4.09 in mAP, AP50,
and mRec50, improving the performance of SOTA 4.8%, 3.4%, and 5.6% respectively. For the 6-fold cross-validation, our
proposed method shows the improvement of 3.2, 1.7, and 0.6 in mAP, AP50, and mRec50, pushing the performance of SOTA
for 5.3%, 2.4%, and 0.7% respectively. Figure 6 shows the qualitative results on Area 5 of S3DIS.

10. Additional discussion on ScanNet results
Class-level Performance - Why better? In ScanNetV2, we found a pattern of certain instances being located very close(<
20 cm) to each other, which can impose challenges in sharply segregating boundaries. For example, the top 3 categories
found to have the same type of instances around the most are Picture, Desk, and Bookshelf. On average, a picture hangs with
2.05 pictures on a wall, a desk has 1.07 adjacent desks, usually in an office scene, and a bookshelf also has 1.29 bookshelves
very close, usually in a library scene.

To further understand this, we plotted mAP conditioned on the number of close instances belonging to the same categories
in Figure 2. The figure shows the drop in performance as the number of adjacent instances increases for all the methods. We
think this is why we observe the performance drop in Table 1 of the main paper across all the methods. However, our method



Figure 2. Comparing mAPs of methods for instances closely located to the same class of instances.

performs better as Lmc explicitly considers misclassified points around the edges of instances in RPM without considering
immense background points as other methods.
Class-level Performance - Why worse? The performance drop of our method was observed in classes Bed, Counter, and
Cabinet when compared with transformer-based SOTA methods, MAFT, and QueryFormer. These objects are usually very
big and require larger receptive field architectures like transformers. This observation was explored in [10]. We use sparse
convolutions [9] in our encoder, and the architectural design with transformers is left for future work.

We expect similar reasoning (e.g., Wall has 1.04 adjacent walls) as mentioned above to be valid for S3DIS as well.
However, the classes such as Ceiling and Floor being massive and frequent in all the scans can introduce a huge data
imbalance between classes, which was not the case for ScanNet. We are not sure how this would affect the above reasoning,
so we left it for future work.

11. Additional Discussion on Soft Margin Loss with Tanh

During our initial experiments, we found that using the original Soft Margin loss without tanh was found to diverge approx-
imately around 80 epochs. However, the proposed use of tanh stabilized the training and resulted in overall better results.
When tested with the best-performing model(w/o tanh), it resulted in 57.7, 78.0, and 87.9 in mAP, AP50, and AP25, respec-
tively on ScanNet, which is 4.6 lower in mAP compared to our final model.

Method mAP AP50 mPrec50 mRec50

GSPN [18] - - 36.0 28.7
PointGroup [7] - 5.78 61.9 62.1

HAIS [2] - - 71.1 65.0
SSTNet [10] 42.7 59.3 65.6 64.2

SoftGroup [15] 51.6 66.1 73.6 66.6
Mask3D [13] 56.5 69.3 68.7 70.7

TD3D [8] 52.1 67.2 - -
RPGN [3] - - 64.0 63.0

PointInst3D [6] - - 73.1 65.2
DKNet [16] - - 70.8 65.3
ISBNet [14] 56.3 67.5 70.5 72.0
PBNet [19] 53.5 66.4 74.9 65.4

QueryFormer [11] 57.7 69.9 70.5 72.2
MAFT [9] - 69.1 - -

Ours 60.5 72.3 71.3 76.3
Table 4. Quantitative 3D instance segmentation results on S3DIS
Area 5. The best results are in bold, and the second best ones are
in underlined.

Method mAP AP50 mPrec50 mRec50

GSPN [18] - 54.4 38.2 31.2
3D-BoNet [17] - - 65.6 47.7
PointGroup [7] - 64.0 69.6 69.2

OccuSeg [4] - - 72.8 60.3
HAIS [2] - - 73.2 69.4

SSTNet [10] 54.1 67.8 73.5 73.4
PointInst3D [6] - - 76.4 74.0

DKNet [16] - - 75.3 71.1
ISBNet [14] 60.8 70.5 77.5 77.1
PBNet [19] 59.5 70.6 80.1 72.9

Ours 64.0 72.3 78.1 77.7

Table 5. Quantitative 3D instance segmentation results on S3DIS 6-
fold cross-validation. The best results are in bold, and the second best
ones are in underlined.



Figure 3. Runtime analysis on ScanNetV2 validation set. (a) The runtime of each component in Spherical Mask with respect to the number
of input points using a NVIDIA A10 GPU. (b) Comparing the average execution time and the performance in mAP with recent works. On
average, TD3D, ISBNet, MAFT, and Ours use 3947, 3264, 3723, and 3738 MiB on GPU for ScanNet, respectively.

12. Implementation of findSector(.)
The function findSector(.) takes centered points ps ∈ RNp×3 in spherical coordinates and returns the index of the sectors
that the points belong to as mentioned in Section 3.3.2 (line 296-300) and Equations (4), (5), (6), (8) and (12). Alg. 1 shows
the PyTorch implementation of findSector. ps for each vote and batch(during training) are stacked and fed into findSector
at once for the efficient computation using GPU.

Algorithm 1 findSector in PyTorch
Input: ps, Nθ, Nφ

Output: Indices of sectors that each element of ps belong to
1: Function FINDSECTOR(ps,Nθ,Nφ)
2: uθ, uφ = 360/Nθ, 180/Nφ ▷ Horizontal and vertical unit angles for each spherical sector in degree
3: pr, pθ, pφ = ps[:, 0], ps[:, 1], ps[:, 2] ▷ Basis of spherical coordinates
4: θangles = torch.arange(0,360, int(uθ)) ▷ Finding the smallest positive value by subtraction
5: φangles = torch.arange(0,180, int(uφ))
6: diffθ = pθ[:,:,None].repeat(1,1,len(θangles)) - θangles[None,None,:]
7: diffφ = pφ[:,:,None].repeat(1,1,len(φangles)) - φangles[None,None,:]
8: diffθ[diffθ < 0] = uθ + 1 ▷ Preventing negative values from being the smallest values
9: diffφ[diffφ < 0] = uφ + 1

10: diffθ = diffθ/uθ

11: diffφ = diffφ/uφ
12: θsector =torch.argmin(diffθ,2) ▷ The index with the smallest positive value is the sector that each point belongs
13: φsector =torch.argmin(diffφ,2)
14: return φsector ∗Nθ + θsector ▷ Sector indices

13. Runtime Analysis
In this section, we report a runtime analysis of Spherical Mask. Figure 3 (a) shows the execution speed of each module
with respect to the number of input points on ScanNetV2. Here, Mask Assembly includes the findSector function and the
binary mask generation using the inequality operator, as in Equation (12) of the main paper. As can be seen, the execution
time gradually increases as the number of input points grows. The backbone takes the most time among the three due to
the Furthest Point Sampling(FPS). The execution time of Mask Assembly also increases more rapidly compared to RID and



Figure 4. Qualitative results on ScanNetV2 validation set.

RPM modules, as it includes more operations. On average, Spherical Mask segments a point cloud in 167ms.
Figure 3 (b) compares the existing methods and Spherical Mask in terms of execution time and mAP on ScanNetV2

validation set. Spherical Mask achieves the second fastest execution speed while showing the strongest performance in mAP.

14. Additional Qualitative Results
In this section, we show additional qualitative results on ScanNetV2, S3DIS, and STPLS3D datasets. For all the qualitative
results of previous works, we only include the results that reproduce the reported results on their papers based on the published
source codes for each dataset at the time of submission. We additionally include the results of TD3D[8], which we do not
include in the main paper, to highlight only the best-performing methods. The details of each qualitative figure are as follows.

Figure 4 shows the qualitative results of TD3D[8], ISBNet[14], MAFT[9], and our proposed Spherical Mask on Scan-
NetV2 validation set. For S3DIS, Figure 6 shows the results of TD3D[8], ISBNet[14] and our proposed method on Area 5.
Similar to S3DIS, Figure 5 visually compares the results of TD3D[8], ISBNet[14], and our proposed method on STPLS3D.



Figure 5. Qualitative results on STPLS3D.



Figure 6. Qualitative results on S3DIS Area 5.
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