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Overview

This supplementary document is organized as follows:
Section | provides the detailed structure of the encoder, the
decoder and the latent vector indexer.

Section 2 provides the detailed structure of the POD module
and the 3DA module.

Section 3 provides details of segmentation results.

Section 4 provides more ablation studies.

Section 5 provides the number of parameters of each pro-
posed module.

Section 6 provides visualization of each module of ablation
studies.

Section 7 provides discussion about hallucinations.

Section 8 provides more visual comparisons on benchmark
datasets.

1. The Structure of the Encoder, the Decoder
and the Latent Vector Indexer

We provide the detailed structure of the encoder, the de-
coder and the latent vector indexer in Figure 1.

Self-attention block. The self-attention blocks in the en-
coder and decoder employ an attention mechanism to en-
hance the generation performance. The queries (Q), keys
(K), and values (V) are all derived from the same input fea-
tures. Each of these components is obtained througha 1 x 1
convolution after applying Group Normalization [10].

We then apply the attention operation

Atten (Q, K, V) = V - soft (KTQ> 0
en (Q,K,V) =V . softmax ,

Vv,
where d;, denotes the dimension of the features. Subse-
quently, we apply a 2D convolution and add the input of the
self-attention block. This process yields the output of the
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self-attention block. The attention mechanism is employed
to improve the generation quality in Stage I which is further
discussed in Section 4.1.

2. The Structure of the POD Module and the
3DA Module

We provide the detailed structure of the POD module and
the 3DA module in Figure 2 and Figure 3, respectively.

POD module. The input of the POD module is adjacent
low-resolution EM images I7 , and the output of the MPF
module FOu4% where z € {—~N,-N+1,---,0,--- , N —
1, N'}. To align multi-image features, we adopt both optical
flow and deformable convolution [3, 12]. Taking into ac-
count the relationship between deformable convolution off-
sets and optical flow [2], we incorporate optical flow into
the computation of deformable convolution offsets. Fol-
lowing this approach, we utilize SpyNet [7] to compute the
optical flow FL} and FL3. The parameters in the SPyNet
network are fixed. Similar to the MPF module, we employ
a multi-scale fusion scheme

Olz = <[IER]~L2“ [IIO‘R} l2“F‘lOUtlrza F}OUt707 FLlla FLl2>;
APF = Conv}((Conv} (0), [APE],,)):

Ff = DFcom;l(FlO“t’Z, AP?),

| 2)
where C'onv; and DFconv; denote convolution network
and deformable convolution, respectively. HTS denotes up-
sample interpolaion by a factor of s. (-) denotes con-
catenation operation. FOO uhz _ pOutz  When | = 2,
APF = Conv}(Conv}(O7)) in Eq. 2. Then we fuse the
multi-scale aligned feature with 2D convolutions and refine
the alignment results using another deformable convolution
with FOut0 a5 a reference. The output of the POD module
is the aligned adjacent EM image features F41%97:%,
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Figure 1. The detailed structure of the encoder, the decoder and the latent vector indexer. The number following the name of each block

indicates the number of output channels.

3DA module. The input to the 3DA module consists of
the aligned adjacent EM image features F'4/9™* obtained
from the POD module. To eliminate irrelevant features in
adjacent images, we first generate masks along the axial di-
rection. Then, leveraging spatial attention mechanisms and
3D convolutions within the 3DA module, we effectively
fuse the multi-image features. The resulting output of the
3DA module is the fused adjacent EM image feature de-
noted as F'Fused,

3. Segmentation Details

In Table 1, we report V OI,p;: [6] as an indicator of over-
segmentation between our framework and baseline meth-
ods including (1) single-image SR methods: RCAN [11],
SwinIR [5], BSRN [4], and Real-ESRGAN [9], (2) video
SR methods: EDVR [8] and BasicVSR [1]. Our frame-
work achieves the best in terms of V' OlIgp;, indicating
that our framework effectively addresses the issue of over-
segmentation compared to existing methods.

Table 1. Quantitative comparison of V' OI,pi: in EM image seg-
mentation on CREMI C for 16 x and 8 x EMSR. The best is high-
lighted in bold.

Methods 8x 16x
Superhuman MALA | Superhuman MALA
Bicubic 5.6101 2.0792 5.8078 3.0269
RCAN [11] 3.1635 1.2464 4.6630 2.2929
SwinlR [5] 3.1216 1.2376 4.5242 2.2801
BSRN [4] 3.3587 1.2491 4.8932 2.5038
Real-ESRGAN [9] 3.3346 1.2442 3.1484 2.6901
EDVR [8] 2.9574 1.2235 3.7313 1.8214
BasicVSR [1] 3.2299 1.2508 4.0564 1.9635
Ours 2.7177 1.1993 2.4952 1.7396

4. More Ablation Studies

4.1. Effective of Attention Mechanism in the En-
coder and the Decoder

To assess the impact of employing the attention mechanism

within the encoder and decoder on the quality in Stage I,
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Figure 2. The detailed structure of the POD module. The input of the POD module is adjacent low-resolution EM images /7  and the
output of the MPF module F©“%*. The output of the POD module is the aligned adjacent EM image features F'4"9™*  The parameters

in the SPyNet network are fixed.
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Figure 3. The detailed structure of the 3DA module. The input of the 3DA module is the aligned adjacent EM image features

FAllgn,z

from the POD module. The output of the 3DA module is the fused adjacent EM image feature F'¥"45¢4,

we conduct ablation studies by individually removing the
attention mechanism from each component. As shown in
Table 2, the inclusion of attention mechanism in both the
encoder and decoder yields the best generation quality. This
highlights the necessity of employing the attention mecha-
nism in both the encoder and decoder.

4.2. Effectiveness of the Mask in the MPF Module

To assess the indispensability of the mask within the MPF
module, we conduct ablation studies by eliminating the
mask-learning process. As shown in Table 5, the presence
of the mask within the MPF module enhances both recon-
struction quality and segmentation accuracy. This high-
lights the necessity of incorporating the mask in the MPF
module.
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Figure 4. Qualitative comparison for 8 x EMSR in terms of reconstruction and segmentation.
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Figure 5. Qualitative comparison for 16 x EMSR in terms of reconstruction and segmentation.

in the encoder and the decoder in Stage I. The best is highlighted

Table 2. Ablation studies of the effective of attention mechanism
in bold. .

w/o POD  w/o 3DA

Encoder Decoder | PSNRT LPIPS|
w/o Att.  w Att. 28.6573  0.3750
w Att. w/o Att. | 28.6483  0.3740

wAtt.  w ALt 28.6876  0.3715 ours er er wio MPF— Ours ot
Figure 6. Visualization of each module of the ablation study.
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Table 3. Number of parameters of each proposed module for 8 x EMSR.

Module VQGAN-Indexer MPF MPF w/o VGG | POD | POD w/o SPyNet | 3DA
Params/M 43.3503 21.9235 1.8991 2.8932 1.4529 0.3697
Table 4. Number of parameters of each proposed module for 16 x EMSR.

Module VQGAN:-Indexer MPF MPF w/o VGG | POD | POD w/o SPyNet | 3DA
Params/M 45.8417 21.9276 1.9032 2.8932 1.4529 0.3697

Table 5. Ablation studies of the mask in the MPF Module. The
best is highlighted in bold.

Method PSNRT LPIPS| | VOI-Superhuman VOI-MALA
w/o mask | 23.5906  0.4840 3.0886 2.3606
w mask 23.6767 0.4790 2.9639 2.2571

S. Number of Parameters

We present the details of the number of parameters of each
proposed module in Table 3 and Table 4. It’s essential to
note that the VQGAN-Indexer network, the VGG network
in the MPF module, and the SPyNet network in the POD
are fixed in Stage III. Therefore, these parameters are not
considered in Table 1 and Table 2 of the paper. Total pa-
rameters of all three stages are 72.77M for 16 x EMSR and
69.24M for 8x EMSR.

6. Visualization of each Module

We provide visualization of each module of ablation stud-
ies. As shown in Figure 6, the absence of the POD/3DA
module leads to ineffective utilization of information from
adjacent images, resulting in loss of cellular structures. In
the absence of the MPF module, the cell boundaries become
blurry, making it difficult for the segmentation network to
accurately delineate neurons. Consequently, the mitochon-
drion inside the cell is misclassified as an instance of neu-
ron.

7. Discussion about Hallucinations

Large-scale serial electron microscopy imaging plays a cru-
cial role in reconstructing neural connectomic maps and
elucidating the branched morphology of neurons. These
datasets contain an enormous amount of structural details,
presenting both opportunities and challenges for analy-
sis. While the proposed generative framework may pro-
duce unrealistic subcellular structures or compartments, it
by and large will not detriment most neural connections
(e.g., synapses) or critical morphological features (e.g.,
stem branchings) as they are relatively large and easily re-
solvable.

Consequently, the proposed framework is believed to be
capable of sustaining the statistical authenticity and valid-
ity of the entire dataset. Moreover, the presence of halluci-
nated details in specific frames can be mitigated by the seg-
mentation network, which examines adjacent images. This
additional layer of analysis further diminishes the risk of

misleading interpretations, as the segmentation network can
effectively identify and exclude hallucinated details.

8. More Visual Results
In Figure 4 and Figure 5, we present more visual compar-
isons between our framework and baseline methods includ-
ing (1) single-image SR methods: RCAN [11], SwinIR [5],
BSRN [4], and Real-ESRGAN [9], (2) video SR methods:
EDVR [8] and BasicVSR [1].
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