Video Prediction by Modeling Videos as Continuous Multi-Dimensional Processes

Supplementary Material

A. Extended derivations of Eq. (8)

Below is a derivation of Eq. (8), the reduced variance varia-
tional bound for our CVP models.
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Both x¢ and x7 are observed variable hence, we ignore
the first term in the RHS. We focus on the second term for
training the parameters for our CVP models. Therefore, the
resulting loss function becomes,

L(9) = ZDKL(Q(Xt|Xt—17an) | Po(x¢[x¢-1,%0)) -
t>1

B. Extended derivation for Eq. (2)
Using Eq. (2) we can write the term x;4 A, as follows,
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Considering the term (¢t + At) log(t + At) we simplify fur-
ther,

(t + At) log(t + At) =t (1 + A) logt (1 + Att) .
(14)

if At is infinitesimally small we can write (1 + §) — 1.
Using this property we can rewrite X; 4 A as,

tlog(t
Xt+ At = (1 — (t + At))x + (t + At)y - i/g§<)Zt+At
(15)
(16)

Now, Subtracting x;+ A¢+(Eq. (16)) and x,(Eq. (1)) we get,
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Focusing on the term (z;a: — 2¢).
N(0,T). Hence, we can write,

x)At —

Xi+At — Xt = (y - (Zt+At - Zt) (17)

Here, ZiyZy Nt ™

=12z where,z ~ N(0,1) (18)
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Substituting this result back to Eq. (17) we get the following,

Xepar — X = (y — z) At — tlog(t)z. (19)

Rearranging the terms we get the Eq. (2).

C. Training Details

For the optimization of our model, we harnessed the com-
pute of two Nvidia A6000 GPUs, each equipped with 48GB
of memory, to train our CVP model effectively. We adopted a
batch size of 64 and conducted training for a total of 500,000
iterations. To optimize the model parameters, we employed
the AdamW optimizer. Additionally, we incorporated a co-
sine decay schedule for learning rate adjustment, with warm-
up steps set at 10,000 iterations. The maximum learning rate
(Max LR) utilized during training was 5e-5.



Table 5. U-NET: We utilize Hugging face diffusers library for our
U-Net implementation. We utilize ‘positional’ type for timestep
embeddings. We utilize 4 layers per block. The target resolution for
KTH, BAIR and Human3.6M is kept at 64 x 64 and 128 x 128 for
UCF101 dataset. Additionally, we keep the number of timesteps
T as 100 given our compute resources. ¢ denotes the number of
channels present in the frame. n is the number of initial context
frames based on which next frame is predicted,i.e., x0m oy bt

Module ‘ Type ‘ Num Inputs ‘ Num Outputs
Conv2D nxec 128
DownBlock2D 128 128
DownBlock2D 128 128
Encoder DownBlock2D 128 256
DownBlock2D 256 256
AttnDownBlock2D 256 512
ResnetDownsampleBlock2D 512 512
ResnetUpsampleBlock2D 512 512
AttnUpBlock2D 512 512
UpBlock2D 512 256
Decoder UpBlock2D 256 256
UpBlock2D 256 128
UpBlock2D 128 128

Conv2d 128 nxc
D. Ablation Studies

In this section, we present a series of ablation studies con-
ducted to ascertain the impact of various components in our
proposed methodology. These studies focus on three primary
aspects: the modification of the noise schedule denoted as
g(t), the variation in the number of sampling steps, and the
exploration of different strategies for sampling the timestep
t. Our experimental framework utilizes the KTH dataset for
these evaluations.

The outcomes of these experiments are systematically
tabulated in Table. 7, offering a comprehensive view of the
results. The key insights derived from these ablation studies
are threefold. Firstly, our analysis underscores the criticality
of sampling the timestep ¢ from a uniform square root distri-
bution, specifically ¢ ~ /1[0, 1]. This approach appears to
significantly influence the model’s performance.

Secondly, regarding the noise schedule ¢(t), we find that
the optimal formulation for the task of video prediction is
given by g(t) = %g(t). This particular noise schedule is
characterized by a zero initial and final noise level, with a
peak near ¢ = 0. Such a configuration is advantageous for
our application.

Thirdly, our results, as detailed in Table 7, indicate that an
increase in the number of sampling steps beyond 25 does not
substantially improve the outcome. Our method outperforms
MCVD by producing higher-quality frames in just 25 sam-
pling steps, a 75% reduction compared to its 100 steps. This
efficiency is attributed to our CVP method, which retains
information from preceding frames, eliminating the need
for regeneration from a Gaussian noise vector. Refer to the

Table 6. Comparison with baselines on sampling steps and sampling
time required for BAIR robot push dataset.

Method Sampling(Steps/Frame) Time Taken(hrs)

MCVD 100 2
RaMVID 500 7.2
Ours 25 0.45

Table 7. Ablation study: Video prediction results on KTH (64 x
64), predicting 30 frames. All models condition on 4 past frames
on 256 test videos. The method with settings marked with * is
reported in the main paper.

KTH Noise Sampling t FVD]
Schedule(v/2g(t)) steps  Distrbution

- 25 ujo,1] |348.2

sin(rt) 25 ulo,1] |2782

sin(mt) 25 \/Uul[0,1] |237.7

tsin(7rt) 25 ulo,1] |240.7

t sin(rt) 25 VUl0,1] |208.4

CVvP t(1—1t) 25 ulo,1] |209.6

Model H1—1) 25 JU0,1] |187.8

Ablations —tlog(t) 25 u[o,1] [190.4
—tlog(t)= 25% /U0, 1]* | 140.6%

—tlog(t) 5 VuU[0,1] |165.7

—tlog(t) 10 JU,1] |1443

—tlog(t) 50 u[0,1] (1394

Table 6 for more details.

In summary, these ablation studies provide valuable in-
sights into the dynamics of our model under varying con-
ditions, highlighting the importance of specific parameter
settings and offering guidance for future research directions.

E. Broader Impact

We used this method for video prediction; however, such
modeling can make a major impact on many computational
photography tasks. Here, one end of the CVP can be a cor-
rupted image and the other end be a clean ground truth image.
Additionally, a larger model with an increased number of
parameters, trained on more advanced hardware, could poten-
tially have advanced video prediction capabilities. This can
lead to a significant increase in the creation of high-quality
artificially generated content, further compounding the prob-
lems of fake content. However, a positive contribution of
this approach can help with its application in autonomous
driving.
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