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1. Evaluation of Our Proposed Dataset
1.1. Typical Scenes in Our Real-HDRV dataset

Our proposed Real-HDRV dataset contains 500 LDRs-HDRs video pairs covering a variety of scenes with high dynamic
range. To ensure the diversity of our dataset, samples are collected from diverse light conditions (indoor, outdoor, daytime,
and nighttime). To our best knowledge, our Real-HDRV is the largest real-world dataset for HDR video reconstruction.
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Figure S1. Some typical scenes in our Real-HDRV. We show the alternatingly-exposed LDR sequences and one specific LDRs-HDRs
video pair. As seen, our dataset covers a wide variety of scenarios.

1.2. How different motions are created when capturing dataset?

Local motion: Motions between frames are created by people or moving objects, while the camera is static; Camera
motion: The motion is created by moving the camera, while the scene is static; Full motion: Motions are created by people
or moving objects and moving the camera.



1.3. More Qualitative Results on the Chen21 dataset

In this section, to demonstrate the effectiveness of our Real-HDRV, we show more visual comparisons on the real-world
Chen21 dataset [1]. We train representative HDR reconstruction models (i.e., AHDRNet [11], Kalantari19 [3], Chen21 [1],
CA-ViT [7], and LAN-HDR [2]) on our Real-HDRV and the synthetic dataset [1], and evaluate the performance of trained
models on the Chen21 dataset. All the following HDR results are tonemapped for visualization.

Figure S2 shows the visual results on the static set of the Chen21 dataset [1]. Obviously, the models trained with our
Real-HDRV yield more excellent visual quality, while the models trained with the synthetic dataset [1] typically yield high-
light blurs, color distortion or corrupted details. For example, in the areas of red rectangles in Figure S2 (the 1st scene),
the networks trained on the synthetic dataset typically generate severe high-light blurs in the reconstructed results, while
the models trained with our Real-HDRV are able to produce the more appealing results. This is because our Real-HDRV is
collected from real-world scenes, which can provide the real degradation distribution.
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Figure S2. Visual comparison of different networks trained on our dataset and the synthetic dataset [1]. These test scenes are from the
static set of the Chen21 dataset. Please zoom in for more details.



Figure S3 shows the visual results on the dynamic set of the Chen21 dataset [1]. Obviously, the models trained with
our Real-HDRV yield better visual quality, while the models trained with the synthetic dataset [1] typically yield ghosting
artifacts or corrupted details. For example, in the areas of red rectangles in Figure S3 (the 3rd scene), the models trained
on the synthetic dataset can not faithfully recover the details for the under-exposed regions and they are susceptible to ghost-
ing artifacts, while the models trained on our Real-HDRV can generate more faithful results without introducing ghosting
artifacts. These visual improvements reiterate the superiority of our Real-HDRV.
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Figure S3. Visual comparison of different models trained on our dataset and the synthetic dataset [1]. These test scenes are from the
dynamic set of the Chen21 dataset [1]. Please zoom in for more details.

Figure S4 shows the visual results on one of the unlabeled sequences of the Chen21 dataset [1]. As seen, when the
reference frame is high-exposure, the models trained on our dataset can recover more clear and faithful details for the over-
exposed regions, while the models trained on the synthetic dataset generate ghosting artifacts or color distortions.
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Figure S4. Visual comparison of different models trained on our dataset and the synthetic dataset [1]. The scene is one of the unlabeled
sequences from the Chen21 dataset [1]. Please zoom in for more details.



2. The architecture of global alignment module (GAM)
Our CNN-based GAM adaptively learns to compensate the global motion for the alternating-exposed inputs through

end-to-end training, performing alignment in an exposure-invariant manner. Figure S5 shows the detailed architecture of our
GAM, given the input {Xj |j = i − 1, i , i + 1}, the GAM firstly uses a shared encoding layer to extract feature maps Gj

with 16 channels from inputs. Then, the features {Gj |j = i − 1, i + 1} of neighboring frames are fed into the weights esti-
mation module E (.) along with the feature map Gi of the reference image to obtain the corresponding weights {α1k, α2k},
generating the global offsets Oi−1 ,i and Oi+1 ,i .

Note that our method works for images with different sizes. We use the global average pooling at the end of GAM to get
8-channel weights, weighting 8 pre-defined fixed offsets [12] (size: 8×H×W×2) to generate the final global offsets (size:
H×W×2). The global offsets are then used for spatially warping the neighboring frames.
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Figure S5. The detailed architecture of our proposed GAM.



3. Evaluation of Our Proposed Method
In this section, we further evaluate our method on the Chen21 dataset [1] to demonstrate the generalization of our proposed

method. Then, we provide more visual results on our Real-HDRV. We compare our method with prevalent state-of-the-art
HDR video reconstruction methods [1–3, 5, 13] and state-of-the-art HDR deghosting methods [7, 11] on the Chen21 dataset
for a comprehensive evaluation. Note that all methods are trained on our Real-HDRV.

3.1. Quantitative Results

Table S1 shows the quantitative comparison on the Chen21 dataset [1]. Our method achieves superior or comparable
performances to state-of-the-art methods. Although some methods [1, 7, 13] shows slightly better scores in some evaluation
metrics (e.g., PSNR-µ) for dynamic set, they suffer from the ghosting artifacts for under-exposed regions (see Figure S6).

Table S1. Quantitative comparison between our method and other methods on the dynamic set and static set of the Chen21 dataset [1].

Evaluation on the dynamic set Evaluation on the static set
Method HDR-VDP-2 PSNR-µ SSIM-µ HDR-VQM HDR-VDP-2 PSNR-µ SSIM-µ HDR-VQM

AHDRNet [11] 62.51 45.02 0.9741 89.60 59.53 40.16 0.9589 77.84
Kalantari19 [1] 61.39 45.31 0.9689 86.95 59.69 41.19 0.9336 81.83

Chen21 [1] 61.39 45.65 0.9716 90.33 59.46 41.37 0.9419 81.43
CA-ViT [7] 62.43 45.19 0.9744 90.41 59.05 39.91 0.9570 77.69
Yue23 [13] 62.73 45.31 0.9693 90.53 60.22 40.81 0.9572 82.50

LAN-HDR [2] 62.83 45.38 0.9743 88.96 59.78 40.09 0.9565 79.29
Ours 63.57 45.53 0.9739 90.22 62.01 41.65 0.9621 87.34

3.2. Qualitative Results

Figure S6 shows the visual results on the dynamic set of the Chen21 dataset [1]. As seen, our method can recover the
details for the under-exposed areas without introducing ghosting artifacts, while other competing methods typically generate
severe ghosting artifacts. This is because these methods either lack an alignment module or can not effectively perform
alignment for the input frames, and hence they are prone to introducing unaligned contents from the neighboring frames.
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Our HDR Result LDR inputs LDR patches

Figure S6. Visual comparison on the dynamic set of the Chen21 dataset [1]. Please zoom in for more details.



Figure S7 shows the visual results on the static set of the Chen21 dataset [1]. Obviously, when the reference frame is
low-exposure, our method is able to restore more and better details than other methods and generates less noisy artifacts for
the under-exposed regions.
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Figure S7. Visual comparison on the static set of the Chen21 dataset [1]. Please zoom in for more details.



3.3. More Results on Unlabeled Sequences of the Chen21 dataset

The unlabeled sequences of the Chen21 dataset [1] are captured in practical scenarios, which contain uncontrolled dynamic
scenes and provide more diverse motion patterns for qualitative evaluation. We provide the visual results on the unlabeled
sequences in Figure S8, Figure S9, and Figure S10.
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Figure S8. Visual comparison on unlabeled sequences of the Chen21 dataset [1], where the reference frames are high-exposure. Please
zoom in for more details.
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Figure S9. Visual comparison on unlabeled sequences of the Chen21 dataset [1], where the reference frames are high-exposure. Please
zoom in for more details.
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Figure S10. Visual comparison on unlabeled sequences of the Chen21 dataset [1], where the reference frames are low-exposure. Please
zoom in for more details.



3.4. More Visual Results on Our Real-HDRV

Figure S11 shows the visual results of different methods on our Real-HDRV. As seen, our method can recover the details
for the under-exposed areas without introducing ghosting artifacts, while other competing methods typically generate severe
ghosting artifacts. Similar improvement can also be observed for the over-exposed areas (see the 2nd scene in Figure S11).
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Figure S11. Visual comparison between our method and other methods on our Real-HDRV. Please zoom in for more details.



4. Wider Applications of Our Proposed Dataset
Since our dataset provides data in RAW format and contains the per-frame HDR labels, it can be easily adjusted to make

training data for different HDR tasks for future research (e.g., single-image HDR reconstruction [14], HDR deghosting [9],
multi-exposure image fusion [8], etc.). The flexibility of our dataset enables it to alleviate the lack of datasets in HDR
imaging. In this work, we extend our dataset to HDR deghosting. Specifically, following the strategy in [4], we organize the
dynamic LDR images in the order of under-, medium- and over-exposed (LDR images with exposure values of {-2, 0, +2}
or {-3, 0, +3}), and generate the HDR label for medium-exposed LDR image. Finally, we obtained 450 training pairs and 50
testing pairs.

Table S2. Comparison between different datasets. OD, ON, ID and IN denote outdoor daytime, outdoor nighttime, indoor daytime and
indoor nighttime, respectively.

Dataset Numbers (Training / Testing) Scenes
Kalantari17 [4] 74 / 15 ID, OD

Tel23 [9] 108 / 36 ID, IN, OD
Ours 450 / 50 ID, IN, OD, ON

We further compare our dataset with the commonly adopted HDR deghosting dataset (Kalantari17 [4]) and the latest
HDR deghosting dataset (Tel23 [9]). The comparison between different datasets is shown in Table S2. To further demon-
strate the superiority of our dataset, we train representative HDR deghosting models (i.e., DeepHDR [10], AHDRNet [11],
and ADNet [6]) on our dataset and Kalantari17 dataset [4] , and evaluate the performance of trained models on the Tel23
dataset [9]. The quantitative result is shown in Table S3. As seen, the models trained on our dataset acquire the higher scores
in almost all the evaluation metrics, demonstrating the superiority of our dataset. These significant improvements stem from
the large-scale data, diverse scenes, and diverse motion patterns in our dataset.

Table S3. Quantitative comparison for training on Kalantari17 dataset [4] or our proposed dataset, while evaluating on the Tel23 dataset [9].
‘⋇’ means the models are trained on Kalantari17 dataset [4]. ‘†’ means the models are trained on our Real-HDRV. The better results are
highlighted in bold.

Method PSNR-µ SSIM-µ PU-PSNR PU-SSIM HDR-VDP-2
DeepHDR⋇ [10] 34.54 0.9594 29.13 0.9579 57.19
DeepHDR† [10] 35.22 0.9648 29.83 0.9660 57.72
AHDRNet⋇ [11] 34.06 0.9606 28.84 0.9620 56.74
AHDRNet† [11] 35.48 0.9642 30.34 0.9695 58.52

ADNet⋇ [6] 34.52 0.9650 29.33 0.9666 56.24
ADNet† [6] 35.33 0.9643 30.18 0.9682 58.53
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