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Abstract

In this supplementary material, we provide more details
of our proposed method with in-depth analysis and addi-
tional results. Specifically, we describe in detail the diffusion
model used to blend objects into background images in an
inpainting mode in Sec. 1. We present more ablation studies
on additional aspects of our method in Sec. 2. We analyse the
converge of NeRF training using pose-conditioned dataset
updates in Sec. 3. We showcase the potential of our method
via extensions in Sec. 4.

1. Diffusion model with inpainting mode
We detail the inpainting mode of the Stable Diffusion
model [4] mentioned in Sec.3.2 in the main paper. Recall
that Dθ (with parameters θ) is our diffusion model. Dθ in-
cludes a U-Net [5] denoising model ϵθ that learns the noise
component ϵα ∼ N (0,1) added in the diffusion process,
where α ∈ [0, 1] is the noise strength. To train Dθ with in-
painting mode, a ground-truth inpainting dataset is required.
Each data sample in such dataset is composed of an image I ,
a mask M , and an image-paired text prompt p.

Stable Diffusion [4] opts to accelerate the ϵθ training in a
latent space rather than an image space. Specifically, a con-
catenated latent input for ϵθ is constructed as follows. First,
given a training image I , a noisy latent vector E(I) ⊕ ϵα
is created, where E is an image encoder and ⊕ is a pixel-
wise addition. The denoising model ϵθ is trained so that
it can predict the added noise ϵα. Note that we skip writ-
ing tedious terms in the pixel-wise addition related to the
forward/backward processes (please refer to DDPM [2] for
mathematical details). Next, a masked image’s latent vector
E(I⊙M) is built, where ⊙ is a pixel-wise product. E(I⊙M)
feeds ground-truth mask-out information for ϵθ to perfectly
restore the content outside the mask. Then, M is resized to
a latent-shape mask M ′ to tell ϵθ the pixel locations that are

inner-mask or outer-mask. Finally, the latent text prompt
τ(p) encoded by a text encoder τ , and a diffusion time step
t derived from ϵα (please refer to DDPM [2] for time step
calculation), are passed to ϵθ as inputs. ϵθ is trained with the
following loss:

L(θ) = E
[
∥ϵα − ϵθ

(
E(I)⊕ ϵα, E(I ⊙M),M ′, τ(p), t

)
∥22
]

(1)
Note that, Eq. 1 here is a more detailed version of Eq. 1

in the main paper. However, for the sake of simplicity but
without ambiguity, we skip subscripts representing variable
distributions in E.

2. More ablation studies
2.1. Quantitative results

In Sec. 4.6 and Fig. 5 in the main paper, we present
qualitative results showing the impact of technical com-
ponents in our method (e.g., diffusion model tuning with
object/background images, dataset updates with pose-
conditioned vs pose-random views, periodic dataset updates).
Here we provide quantitative analyses of those components.
In particular, we build different variants of our method, each
of which corresponds a setting that we investigate in Sec.
4.6 in the main paper, e.g., we have variants which fine-tune
the diffusion model using only object or background images.
We report the CLIPScore and CLIPDC scores of our full
pipeline and its variants in Tab. 1. Experimental results show
that our full pipeline outperforms its variants on both the
CLIPScore and CLIPDC metrics.

2.2. Noise strength hyperparameter

Recall that during NeRF updating, we pass NeRF render-
ing results to the fine-tuned diffusion models for pose-
conditioned dataset updates. The diffusion model then re-
fines the NeRF rendering results as in Eq. 6 in the main paper,
where we set the noise strength α ∈ [0.3, 0.4]. We found



Variant CLIPScore ↑ CLIPDC ↑
Fine-tuning of the diffusion model without using object images 0.2861 0.1550
Fine-tuning of the diffusion model without using background images 0.3220 0.1891
Dataset updates with random poses (without pose-conditioned updates) 0.3216 0.1738
Without periodic dataset updates 0.3167 0.1887

Full pipeline (Ours) 0.3276 0.1996

Table 1. Quantitative evaluations of technical components in the proposed method. The results are complementary to those presented in
Sec. 4.6 and Fig. 5 in the main paper. Higher scores indicate better and more consistent editing quality.

this setting effectively balances two objectives. First, it pre-
serves sufficient color hints from previously learned nearby
views (provided from the NeRF rendering results), thereby
enabling the diffusion model to consider this color informa-
tion. Second, it introduces an adequate level of randomness
that enables the diffusion model to refine the NeRF rendering
results based on the fine-tuned/pre-trained knowledge.

As this noise strength hyperparameter is critical for bal-
ancing the two objectives, we experiment it with different
values and show corresponding results in Fig. 1. As shown,
unsuitable noise strengths used by the diffusion model result
in various failures. In particular, a too-low noise hinders the
diffusion model from refining the NeRF rendering results
with plausible object or background content, largely reduc-
ing the effectiveness of the diffusion model during inference
(see Fig. 1-a). On the other hand, a too-strong noise disables
the nearby-view color hints being passed to the diffusion
model and hence defects the dataset updates strategy, result-
ing in view inconsistencies (see Fig. 1-c,d). We also test the
diffusion model in inference with random strengths within a
range [0.02, 0.98] as in Instruct-NeRF2NeRF [1]. We found
that high-noise inference dominates and leads to similar pose
inconsistency (see Fig. 1-e). As shown in the results, our
current setting (see Fig. 1-b) well balances the objectives
and thus can make plausible content with view consistency.

3. Convergence analysis

In the context of pose-conditioned dataset updates, we pro-
gressively include new nearby views into the NeRF training
dataset. In this study, we provide a detailed example of how
the generated content in these newly included nearby views
converges to a desirable quality. Specifically, we first train
the NeRF on an initial view (1st view) for 500 steps. We then
include two nearby views (2nd and 3rd views) after rendering
them by the NeRF and refining them by the diffusion model.
These two newly included views are trained from step-500
to step-1000. We show in Fig. 2 the latest NeRF renderings
and the diffusion model-refined images at step-500, step-750,
and step-1000. The results reveal a gradual convergence of
objects from defected to better quality (observe the zoom-in
regions). These results clearly show the effectiveness of our

pose-conditioned dataset update strategy.
It is worth noting that Fig. 2 also reflects two important

observations that motivate our work. First, the NeRF is
capable of rendering sufficient object color hints in new
views learned from previous nearby views, even at step-500
where the new views are not yet seen by the NeRF. Second,
artifacts can be addressed by our diffusion model, fine-tuned
on object images. This fine-tuning constrains an object from
diverging to different appearances or inconsistent poses.

4. Extensions
4.1. Object locating using bounding box

Our pipeline allows object locating using bounding boxes.
We show several results of this experiment in Fig. 3, where
we insert the same object into a background scene at different
locations using both 3D bounding box (as in our current set-
ting) and 2D bounding box. We observed that, 3D bounding
boxes can fit most the real-world objects (see Fig. 3-a). On
the other hand, 2D bounding boxes can locate flat objects on
a surface but fail to describe objects which exhibit 3D-aware
perspective (see Fig. 3-b).

4.2. Insertion of synthetic objects via text-to-3D

We show the versatility of our method by allowing synthetic
objects to be inserted in real-world background scenes. This
is enabled by leveraging the advanced text-to-3D technique
in [3] to create 3D models, whose multi-view renderings are
used as object images in our pipeline. We illustrate several
results of this study in Fig. 4. Although the objects generated
by the text-to-3D technique are synthetic, our method still
produces view-consistent editing results. We hypothesize
that future advances in text-to-3D generation will improve
the texture and lighting conditions of the synthesized 3D
models, making object fusion results into real-world back-
ground scenes more photo-realistic.

4.3. Multiple editings

Editing a scene with different operations for multiple times
is a natural practice in scene editing. Our pipeline also sup-
ports this demand. Specifically, we can iteratively perform



(a) Noise strength α = 0.05 (low noise strength)

(b) Noise strength α = 0.35 (Ours, relatively low noise strength)

(c) Noise strength α = 0.65 (relatively high noise strength)

(d) Noise strength α = 0.95 (high noise strength)

(e) Noise strength α randomly sampled from range [0.02, 0.98] [1] (random noise strength)

Figure 1. Ablation study results about noise strength. Each row shows the results of a variant of our pipeline adapting a different noise
strength during training. The left and right columns include images of two different views of an edited scene. For each column, from left to
right are the results of increasing training steps, where the most left image in each column is an early-stage result and the most right is the
final output. The left column is a view near the starting view, which converges faster than the right column from a farther view.

multiple editings (one by one) through our pipeline on the
same scene. We showcase this ability in Fig. 5, where we
apply our method for an editing on a background scene. We
then treat the edited scene as a new input background on
which we apply our method again for another editing. The
results in Fig. 5 illustrate the ability of our method in making
multiple view-consistent editings.
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Initial (1st) view
The only image in 
dataset, train 500 steps

2nd and 3rd view with diffusion model
- diffusion model refines 2nd and 3rd view
- update to dataset at step 500, 750, 1000

2nd and 3rd view with NeRF
- select two nearby views at step 500
- render 2nd and 3rd view using NeRF

Step 500

Step 750

Continue with 4th and 5th views

2nd and 3rd view: NeRF renderings 2nd and 3rd view: refined images

Step 1000

Figure 2. Convergence of newly included near-by views. We show a convergence example of the generated content in the newly included
nearby views. Red boxes with corresponding closeups highlight the editing quality achieved by the joint 2D diffusion-3D NeRF updating.



(a) 3D bounding boxes can effectively specify the object orientation

(b) 2D bounding box works for objects that fit a 2D surface in all viewpoints
(left) but fails for objects viewed from more 3D-aware perspectives (right)

Figure 3. Object locating using 3D vs. 2D bounding box. Here
we show the effect of object locating using 3D bounding box (a)
and 2D bounding box (b). First, we specify the locations for a
target object by placing a bounding box into a background scene
(first and third columns). The object is then inserted by our method
at corresponding locations (second and fourth columns). As shown,
our current setting with 3D bounding box design maintains better
view consistency and 3D awareness.

a zoomed out
DSLR photo of
a sitting panda
sculpture

a zoomed out
DSLR photo
of a red white
airliner model

(a) Text-to-3D ob-
ject and text prompt

(b) Input background
and target bounding box

(c) Edited scene from
our full pipeline

Figure 4. Insertion of synthetic objects produced by text-to-3D
generation. (a) Text-to-3D objects generated by [3]. Multi-view
images of these objects are then rendered for our pipeline. (b) Real-
world background scene with bounding box providing location for
the target object. (c) Editing results. As shown, our method can
generate pose-consistent editing results even with synthetic-looking
objects.



(a) Input (b) First edit (c) Second edit

Figure 5. Multiple editings on the same scene. (a) Input back-
ground scenes. (b) First editing: we insert a yellow package into
the first scene (top two rows) and remove the accessories on the
table from the second scene (bottom two rows). (c) Second editing:
we insert another yellow package into the first scene (top two rows)
and insert a hair dryer into the second scene (bottom two rows).
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