Supplementary Materials: Unsupervised Semantic Segmentation Through
Depth-Guided Feature Correlation and Sampling

A. Training Details
A.1. General Hyperparameters

We provide the hyperparameters used to train our mod-
els. While all models share some common parameters, there
are many that can vary for each dataset. The hyperparame-
ters in Table | are identical for all models:

Component Value
Training Size 224 x 224
Test Size 320 x 320
Learning Rate 5e~4

Table 1. General hyperparameters.

A.2. Dataset-specific Hyperparameters

Table 2 shows the collection of hyperparamers that are
specific for our results on various datasets and for various
model sizes. We note that Potsdam-3 already undergoes a
preprocessing where the images are cropped into 200 x 200
sized crops, following [2]. Further, as detailed in the main
text, for Cityscapes the entire feature map is used for learn-

ing.

Dataset COCO-Stuff 27 Cityscapes  Potsdam

Model ViT-S ViT-B ViT-B ViT-S
J Component
ADepthG 0.19 0.16 0.09 0.13
Aself 0.58 0.23 0.95 0.61
Aknn 0.36 1.05 1.02 0.34
)\rundom 0.70 0.24 0.57 0.72
bpepthG 0.03 0.03 0.03 0.14
Dselr 0.07 0.12 0.39 0.2
bknn 0.02 0.21 0.25 0.09
brandom 0.76 0.97 0.26 0.63
Training Steps 7000 7000 7000 7000
Pointwise Sampling v v X v
N 9 12 All 11
Decay Step 250 300 400 None
Decay Factor 0.6 0.64 0.8 None
Cropping Five-Crop Five-Crop  Five-Crop None

Table 2. Dataset-specific hyperparameters.

B. Further Ablations
B.1. Guidance Variations

To explore the functionality of our guidance mechanism,
we present further ablations in Table 3 where we also ex-
plore the use of feature maps from the penultimate layer
of the monocular depth estimator (MDE) and using image
and perspective planes. We further try plugging the ground-
truth segmentation maps into the guidance mechanism. We
show unsupervised metrics and use the ViT-S/8 config. Our
experiments show guidance with depth maps exceeds the
placebo effect of using image or perspective planes, and is
most effective when utilizing depth maps.

COCO-Stuff Potsdam
Guidance Accuracy mloU Accuracy
STEGO 48.3 24.5 77.0
Depth Map 56.3 25.6 80.4
MDE Features 55.9 25.4 69.3
Image Plane 533 22.8 71.1
Perspective Plane 52.1 23.7 67.4
SemSeg Map 52.8 23.2 80.4

Table 3. Guidance Variations. We experiment with different
ways of guiding our model. In addition to the depth map, we show
results for use MDE features, an image and perspective plane, as
well as the semantic maps. Our experiments show that depth maps
are the most effective guidance modality.

B.2. Number Of Feature Samples

N 6 7 8 9 10 11 12

U. Accuracy 52.6 52.6 542 563 534 543 541
U. mloU 222 230 238 256 242 242 240

Table 4. Different number of sampled features N2 .

We ablate varying the number of sampled features N2
for the ViT-S backbone on COCO-Stuff 27. Table 4 shows
the results. For N = 9, our method obtains the best result.



Generally, more samples work better than fewer samples.
For N < 8, our method shows a significant drop in perfor-
mance. We further find that for the ViT-S model for COCO-
Stuff 27, reducing the number of samples during training
can lead to a slight gain in performance. There, IV is re-
duced by 1 at every 3000 steps.

B.3. Guidance Scheduling

We evaluate the effect of scheduling the impact of our
Depth-Feature Correlation loss. As detailed in the main
text, with our method, we enable to model to get a head
start and learn about the rough structure in the scene, to then
shift the focus on learning representation from the images
as training progresses. Our experiments in Table 5 confirm
this. When disabling guidance scheduling, our model’s per-
formance deteriorates.

Guidance Scheduling X v

Unsupervised Accuracy 49.4 56.3
Unsupervised mloU 18.8 25.6

Table 5. STEGO + Ours with and without guidance scheduling.

B.4. NYUv2 With Ground Truth Depth

Depth Source  mloU

ZoeDepth 26.1
Sensor GT 26.2

Table 6. Results On NYUv2. We compare using predicted depth
to using ground-truth depth

To compare how our method performs with ground-truth
depth vs. predicted depth from ZoeDepth [1], we eva-
lute our model on the NYUv2 [4] semantic segmentation
dataset. We report results in Table 6 and observe that using
predicted depth yields similar results as using ground-truth
depth.

B.5. Farthest Point Sampling Visualizations

To further underline the importance of FPS for our
method, and to provide an intuition for how it samples fea-
ture, we show additional sampling visualizations. In Fig-
ure 3, we display FPS along a sampled axis in the image
and depth map. The depth gradient is displayed below in
1D, along with the samples visualized. Figure 2 provides
an intuition how FPS selects sampling locations along dif-
ferent gradients. For a continuous signal, FPS samples to
space evenly, but the sharper the surface becomes, the more
samples are concentrated around the gradient. These 3D
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Figure 1. Further examples of Random vs. Farthest Point Sam-
pling.

(b) Smooth Signal: Samples concentrate slightly at the gradient
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(c) Sharp Signal: Samples concentrate at depth gradient

Figure 2. Visualization of FPS. We show that samples in FPS con-
verge towards a depth gradient in the signal. The stronger the gra-
dient the more samples are drawn at this region, resulting in mean-
ingful samples for our Depth-Feature Correlation Loss. Numbers
denote the order in which the points are sampled.



Figure 3. Visualization of FPS. We show how FPS samples the depth space on a selection of images. To show the sapling process, we
apply FPS along a line in the image to show how it behaves for sampling the depth space. We project the sampled locations along with the
depth gradients onto a 1D plot in the bottom row. It can be observed that FPS samples along the edges of objects and encourages depth
diversity in the chosen samples.
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Figure 4. Predicted Depth for Potsdam dataset. We use ZoeDepth [1] to predict on the Potsdam aerial images. As can be observed from
the visualization, the predictions can overemphasize the foreground and display a bias of predicting depth gradients towards the bottom of
the depth map, despite no significant change in depth.

sampling locations are consequently converted to 2D sam- C. Qualitative Results
ples and after conversion, they appear around the edges of
objects. We also show further random sampling vs. FPS C.1. More Results

examples in Figure 1. . o o
We show additional qualitative results in Figure 6. All

results were generated by ViT-S models, also for compet-
itive methods. Throughout all examples, our depth guid-
ance is effective at enabling our model to segment the scene
nicely with more consistent surfaces.



C.2. Comparison to HP

As part of Figure 6, we also add qualitative comparisons
to Hidden Positives. While their approach significantly im-
proves the performance of STEGO on the shown examples,
our method often produces more consistent segmentations
for surfaces. For example, in the top row, Hidden Positives
fails to segment the boat at all, while our method produces
the correct segmentation.

C.3. Potsdam Depth Predictions

As mentioned in the main text, we show examples of
depth precitions from ZoeDepth [1] in Figure 4. While the
predictions have sharp boarders around houses, there are a
few cases displayed where the model struggles. For exam-
ple, in the most left column, it produces a depth gradient
towards the bottom of the images, despite the entire parking
lot having the same depth. In the center column, the part of
the road in the top right-hand corner is predicted as further
away, while the red cyclist path appears much closer. Fur-
ther, in the most right column, the model is irritated by the
trees.

C.4. Source Of Depth Maps

Figure 5 provides a qualitative comparison of the depth
maps produced by ZoeDepth [ ], MiDaS [3] and Kick Back
& Relax [5]. All maps are Min-Max normalized. Out of
all models, ZoeDepth produces the most consistent depth
surfaces, even for complex COCO-Stuff scenes such as
crowds. The depth maps from MiDaS are similar but lack
detail. Kick Back & Relax shows impressive results for a
self-supervised method, but fails to capture details such as
the right zebra’s ears in the center column.
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Figure 5. Comparison of different monocular depth estimators on COCO-Stuff 27. Our visualizations qualitatively compares the
depth maps predicted by ZoeDepth [1], MiDaS [3], and Kick Back & Relax [5].
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Figure 6. More Qualitative Results on COCO-Stuff 27. We show further qualitative results, adding also a comparison to Hidden
Positives.




