
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers
– Supplementary Document –

Yawar Siddiqui1 Antonio Alliegro2 Alexey Artemov1

Tatiana Tommasi2 Daniele Sirigatti3 Vladislav Rosov3 Angela Dai1 Matthias Nießner1

Technical University of Munich1 Politecnico di Torino2 AUDI AG3

In this supplementary document, we discuss additional
details about our method MeshGPT. We provide implemen-
tation details of our method, loss functions, and the base-
lines in Section 2. Additional details about the user study
are provided in Section 3. We also provide further qualita-
tive and quantitative results (Section 5), including a shape
novelty analysis (Section 4) for shapes from the main pa-
per. Additional limitations are discussed in Section ??. We
further encourage the readers to check out the supplemen-
tal video for a summary of the method and an overview of
results.

1. Data

Selection. We use the ShapeNetV2 [2] dataset for all our
experiments. We first apply planar decimation to each shape
using Blender [4], with the angle tolerance parameter α set
within [1, 60]. The impact of this decimation is assessed
by calculating the Hausdorff distance [1] between the deci-
mated and original shapes. We then choose, for each orig-
inal shape, the decimated version with the Hausdorff dis-
tance closest to, but below, a pre-set threshold δhausdorff.
Shapes with more than 800 faces are excluded, resulting in a
final count of 28980 shapes across all categories. The Chair,
Table, Bench, and Lamp categories are further divided into
a 9:1 train-test split. All shapes from rest of the categories
are used for pretraining phase, while only the training subset
from specific categories is used for pretraining and finetun-
ing. All shapes are normalized to be centered at the origin
and scaled to ensure the longest side is of unit length.

Augmentation. During the training of both the encoder-
decoder and the transformer, multiple augmentation tech-
niques are applied to all train shapes. Scaling augmenta-
tion, ranging from 0.75 to 1.25, is independently applied
across each axis. Post-scaling, meshes are resized to keep
the longest side at unit length. Additionally, jitter-shift aug-
mentation in the range of [−0.1, 0.1] is used, adjusted to
maintain the mesh within the unit bounding box around the
origin. We also implement varying levels of planar deci-

mation for training shapes, provided the distortion remains
below δhausdorff.

2. Method Details
2.1. Architecture

The architecture of our encoder-decoder network is elabo-
rated in Fig. 4. The encoder comprises a series of SAGE-
Conv [8] graph convolution layers, processing the mesh in
the form of a face graph. For each graph node, input fea-
tures include the positionally encoded 9 coordinates of the
face triangle, its area, the angles between its edges, and the
normal of the face. The decoder is essentially a 1D ResNet-
34 [9] network, applied to the face features interpreted as
a 1D sequence. It outputs logits corresponding to the 9
discrete coordinates of each face triangle, which are dis-
cretized within a 1283 space. The codebook C has a size
of 16384. The architecture of the transformer is simply a
GPT-2 medium architecture, i.e. 24 multi-headed self at-
tention layers, 16 heads, 768 as feature width, with context
length of 4608.

2.2. Residual Vector Quantization

Fundamentals. For quantization, we employ residual vec-
tor quantization (RQ) [10, 11]. RQ discretizes a vector z
with a stack of D ordered codes. Starting with the 0th resid-
ual r0 = z, RQ recursively computes td as the code of the
residual rd−1, and the next residual rd as

td = Q (rd−1; C) (1)

rd = rd−1 − e(td) (2)

where Q(z; C) denotes vector quantization of z with code-
book C, and e(td) is the embedding in the codebook C. Fur-
ther, we define

ẑ(d) =

d∑
1

e(td) (3)

as the partial sum of up to d code embeddings, and ẑ = ẑD

is the quantized vector of z. The recursive quantization of

1

Figure 1. Additional novel shapes on Chairs, Tables, Benches and Lamps generated by our method.

RQ thus approximates the vector z in a coarse-to-fine man-
ner [10]. The commitment loss can now be defined between
vector z and its quantization ẑ as

Lcommit(z, ẑ) =

D∑
d=1

∥z− sg[ẑ(d)]∥22 (4)

where sg denotes the stop gradient operation.
Per Vertex Residual Vector Quantization. Instead of di-
rectly applying RQ, for a face feature zi extracted by the
graph encoder, we first split this 576 dimension face feature
zi into 3 features, (z1i , z

2
i , z

3
i), each of 192 dimensions rep-

resenting the features of the face triangle’s 3 vertices. The
features the fall on vertices that are shared across faces are
averaged. On these per vertex index feature zji , RQ quan-
tizes them into a stack of D

3 features,

RQ(zi; C, D) = (RQ(z1i ; C,
D

3
), . . . ,RQ(z3i ; C,

D

3
)) (5)

for codebook C, with

RQ(zji; C,
D

3
) = (t

2j−D
3 +1

i , t
2j−D

3 +2
i , . . . , t2ji), (6)

where tdi is the index to the embedding e(tdi) in the code-
book C. Taken together for each vertex, these form a stack
of D features,

RQ(zi; C, D) = (t1i , t
2
i , . . . , t

D
i) = ti. (7)

Thus, the residual quantization for the features extracted for
all the N faces of the mesh Z = (z1, z2, . . . , zN) is given
as

RQ(Z; C, D) = RQ(z1 . . . zN; C, D) (8)
RQ(z1 . . . zN; C, D) = (t0, t1, . . . , tN). (9)

Fig. 6 gives an intuition on why ‘per vertex’ tokenization
is better than ‘per face’ tokenization, with ablations in the
main paper confirming it.

Figure 2. Shape novelty analysis on ShapeNet [2] chair and table category for shapes generated by our method shown in main paper. We
show the 3 nearest neighbors in terms of Chamfer Distance (CD) for a generated shape. Shapes are scaled to a unit length along all axes to
account for augmented generations before computing CD.

2.3. Loss Functions

Vocabulary Learning. Let Pnijk be the predicted prob-
ability distribution over the discrete coordinates, where n
is the face index, i is the vertex index inside the face, j is
the coordinate’s axis index (x, y or z), and k goes over the
discretized positions ∈ {1, 2, 3, . . . , 128}. If Vnij is the tar-
get discretized position, then the reconstruction loss for the
encoder-decoder network is given as

Lrecon =

N∑
n=1

3∑
i=1

3∑
j=1

128∑
k=1

wnijk logPnijk (10)

with

wnijk = smooth (one-hot128 (Vnij)) (11)

is a smoothening kernel applied across the one-hot proba-
bility distribution over the targets, encouraging physically

close coordinates to be penalized less. The loss over the
encoder-decoder network is the sum of Lrecon and Lcommit
previously described.
Transformer. Given a target sequence T =
(t0, t1, . . . , tN) with ti = (t1i , t

2
i , . . . , t

D
i), and sji is

the corresponding predicted sequence element, then the
transformer is trained with the loss

Lrecon =

N∑
i=1

D∑
j=1

|C|∑
k=1

log p(ski = tji). (12)

2.4. Baselines

We utilize the official implementations for BSPNet [3], At-
lasNet [7], and GET3D [6]. For Polygen [12], we re-
implement it following the details in their paper. To align its
architecture with our method, we employ the same GPT2-
medium architecture for the vertex model in Polygen. Ad-

Figure 3. Shape novelty analysis on ShapeNet [2] bench and lamp category for shapes generated by our method shown in main paper. We
show the 3 nearest neighbors in terms of Chamfer Distance (CD) for a generated shape. Shapes are scaled to a unit length along all axes to
account for augmented generations before computing CD.

Figure 4. Our encoder-decoder network features an encoder with
SAGEConv [8] layers processing mesh faces as a graph. Each
node inputs positionally encoded face triangle coordinates, area,
edge angles, and normal. The decoder, a 1D ResNet-34 [9], in-
terprets face features as a sequence, outputting logits for the dis-
cretized face triangle coordinates in a 1283 space.

ditionally, mirroring our approach, Polygen undergoes pre-
training on all categories and is finetuned for each evalu-
ated category, applying the same train-time augmentations
as used in our method.

3. User Study Details
We develop a Django-based web application for the user
study. In Fig. 5, we show the interface for the questionnaire.

We randomly select 16 pairs of meshes from each baseline
and our method across the Chair and Table categories, half
of which are used for a question on preference based on
shape quality, and the other half for preference based on
triangulation quality. After the samples are prepared, we
ask the users to pick the sample which they prefer more
based on the question. To avoid biases in this user study,
we shuffle the pairs so that there is no positional hint to our
method. We also show a collection of ground-truth meshes
to the user for them to get an idea of the real distribution.
In the end, we gather 784 responses from 49 participants to
calculate the preferences.

4. Shape Novelty Analysis

Fig. 2 and 3 displays the top-3 most similar shapes from the
train set corresponding to all samples used in the main paper
that were generated by our model. These nearest neighbor
shapes are identified based on Chamfer Distance (CD). To
ensure a fair distance computation, accounting for potential
discrepancies due to scale or shift in the augmented gen-
erations, we normalize all generated and train shapes to be
centered within [0, 1]3 and scaled to the extremes of this
cube.

Figure 5. User study interface. We show users a set of random
ground-truth shapes for a category and then ask users for shape
quality and triangulation preference among meshed generated by
two methods.

5. Additional Results

Metrics. Following recent works for unconditional shape
generation [5, 15, 16] for calculating the shape metrics we
define

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y),

COV(Sg, Sr) =
|{argminY ∈Sr

D(X,Y)|X ∈ Sg}|
|Sr|

,

1-NNA(Sg, Sr) =

∑
X∈Sg

1X +
∑

Y ∈Sr
1Y

|Sg|+ |Sr|
,

1X = 1[NX ∈ Sg],

1Y = 1[NY ∈ Sr],

where in the 1-NNA metric NX is a point cloud that is clos-
est to X in both generated and reference dataset, i.e.,

NX = argmin
K∈Sr∪Sg

D(X,K)

We use a Chamfer Distance (CD) distance measure
D(X,Y) for computing these metrics in 3D. To evaluate
these point-based measures, we sample 2048 points ran-
domly from all baseline outputs; and use 6000, 1200, 1000,
8000 generated shapes from chair, bench, lamp and table
categories.

Variant Triangle Accuracy (%) ↑ Cross-Entropy ↓

w/o Positional Encoding 79.33 0.2484
w/o Output Discretization 22.03 0.5705
w/o Residual Quantization 1.29 4.6679
w/o per Vertex Quantization 98.64 0.1413
w/ PointNet Encoder 88.73 0.1896
w/ GAT [13] Encoder 86.14 0.2015
w/ EdgeConv [14] Encoder 91.23 0.1702
w/ ResNet19 Decoder 96.29 0.1492
w/ PointNet Decoder 95.47 0.1528

MeshGPT 98.49 0.1473

Table 1. Ablations of our design choices for the encoder-decoder
network on the Chair category of the ShapeNet [2] dataset.

Qualitative Results. Fig. 1 shows more unconditional gen-
erations from our model across different ShapeNet cate-
gories.
Encoder-Decoder Ablations. In Tab. 1, we show a set of
ablations on the design choice for our encoder-decoder net-
work used for learning the triangle embeddings. We mea-
sure the performance in terms of triangle accuracy, which
measures average accuracy with which all 9 coordinates of
faces are correctly predicted, and the cross-entropy loss on
the test set.

Figure 6. The effectiveness of per-vertex quantization over per-
face quantization can be understood through an example where
two faces share an edge as shown above. With per-face tokeniza-
tion assigning 6 tokens per face, the sequence yields 12 unique
tokens. In contrast, per-vertex tokenization leads to repeated to-
kens in the sequence due to shared vertices between faces. This
repetition makes the sequence easier for the transformer to learn
compared to a wholly unique sequence per face, especially when
both sequences are of equal length.

We evaluate the effect of various choices – how much
does the positional encoding at input help, effect of using
continuous predictions instead of discrete as outputs, us-
ing vector quantization (1 token per face) instead of resid-
ual quantization (D tokens per face), encoder architecture
as a point encoder, or different graph convolution opera-
tors, and decoder architecture as either ResNet19 or Point-
Net decoder. Note that even though for encoder-decoder re-
construction, ‘w/o per Vertex Quantization’ performs best,
this variant works significantly worse than with per Vertex

Quantization, as shown in the main paper. Fig. 6 describes
an intuition of why the embeddings from this variant are
more transformer friendly.

6. Limitations

Our attention context spans 4608 tokens which covers a
max length of 4608

6 ∼ 800 faces (6 tokens/face). To scale
to much larger scenes, future work could consider con-
text window expansion (Code-LLMs), hierarchical trans-
formers, or scalable sequential architectures (SparseAtten-
tion, Mamba). Furthermore, similar to all baselines with
the exception of BSPNet, we do not ensure watertight
meshes. Furthermore, even human-designed meshes (e.g.,
from ShapeNet) may not always be watertight. If water-
tightness is essential, postprocessing (e.g., Manifold++) can
be applied. Furthermore, the errors in autoregressive se-
quence prediction and decoding can result in bad meshes.

References
[1] Henry Blumberg. Hausdorff’s grundzüge der mengenlehre.

1920. 1
[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 1, 3, 4, 5

[3] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:
Generating compact meshes via binary space partitioning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 45–54, 2020. 3

[4] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 1

[5] Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner,
and Angela Dai. Hyperdiffusion: Generating implicit
neural fields with weight-space diffusion. arXiv preprint
arXiv:2303.17015, 2023. 5

[6] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. Advances In Neural In-
formation Processing Systems, 35:31841–31854, 2022. 3

[7] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216–224, 2018. 3

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30, 2017. 1, 4

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 4

[10] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11523–11532, 2022. 1, 2

[11] Julieta Martinez, Holger H Hoos, and James J Little. Stacked
quantizers for compositional vector compression. arXiv
preprint arXiv:1411.2173, 2014. 1

[12] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In International conference on machine learning,
pages 7220–7229. PMLR, 2020. 3

[13] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903, 2017.
5

[14] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1–12, 2019. 5

[15] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19313–19322, 2022. 5

[16] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. Lion: Latent
point diffusion models for 3d shape generation. In Advances
in Neural Information Processing Systems, 2022. 5

	. Data
	. Method Details
	. Architecture
	. Residual Vector Quantization
	. Loss Functions
	. Baselines

	. User Study Details
	. Shape Novelty Analysis
	. Additional Results
	. Limitations

