
A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models

Supplementary Material

A. A closer look to the pitfalls of previous
vision-language adapters

In this work, we provide a closer view of the pitfalls of cur-
rent literature on few-shot vision-language adapters of large
vision-language models. In particular, we observe that re-
cently proposed adapters rely on a large test subset to adjust
important hyperparameters per dataset, and thus become
impractical in real-world few-shot scenarios. This limita-
tion becomes evident when fixing the hyperparameters on a
given scenario and testing the model on other tasks, SoTA
methods typically see their performance degrade compared
to aa well-initialized Linear Probing (see Supp. Fig. 2). In
the following section, we aim to depict a detailed view of
these methods and the reasons that underlay their promis-
ing reported performance.

A.1. What are SoTA adapters doing?

We observe two concurrent phenomena on current SoTA
vision-language adapters: (i) they use a good initialization,
based on the zero-shot prototypes; and (ii) they introduce a
set of empirically-fixed hyperparameters that control the di-
vergence from the initial set of initial zero-shot prototypes.
CLIP-Adapter [11]. The inference relies on the zero-
shot inference as in Eq. (1), using the same prototypes,
which remain static. During training, CLIP-Adapter trains
a residual MLP block to refine the visual features, such that
v′ = v + αrfψ(v). This method explicitly keeps the class
prototypes close to the zero-shot initialization, while modi-
fies the input visual features. This modification can be con-
trolled with the residual ratio, αr, together with the used
learning rate and early stopping at specific epochs.
TIP-Adapter [42]. Training-free CLIP proposes a mul-
timodal combination of logits, using two terms: (i) a
weighted similarity to the support sample, and (ii), the sim-
ilarity of the zero-sot prototypes. This dual formulation can
be expressed in the following formula:

lc = αtipAfψ(v, β)︸ ︷︷ ︸
vision logits

+ τ v · t⊤c︸ ︷︷ ︸
zero-shot logits

(14)

where αtipA and β are control hyperparameters, which are
empirically fixed.

There are two versions of TIP-Adapter. First, a training-
free version, in which the vision logits are obtained by the
post-processed version of the average cosine similarity be-
tween the vision embedding of the target and the support
samples per class. Second, a trainable version in which, ad-
ditionally, the vision embeddings from the support set are

tunned, which dramatically increases the number of train-
able parameters with the number of shots.

Since details matter, it is worth mentioning that in the
combined logits depicted in Supp. Eq. (14), temperature
scaling is only applied on the cosine similarity of text pro-
totypes. The τ value is learned during training and usually
converges to large values, which are clipped at a maximum
value of 100. This scaling makes the logits obtained from
the zero-shot weights dominate in the combined formula-
tion if α is not properly fixed to large values. As we pre-
viously stated, this results in an initialization close to the
zero-shot prototypes, and the deviation from this solution is
carefully controlled with an α scaling per dataset.
Task Residual Learning [40]. TaskRes uses a linear classi-
fier to obtain class prototypes, following Eq. (3). In partic-
ular, the authors propose to train a “prior-independent task
residual”, which follows a re-parametrization of the learned
prototypes w, such that w = t + αwr, where t is the lan-
guage prototypes for the target classes (zero-shot weights),
and wr is a learnable matrix that modifies them. This mod-
ification is controlled by the hyperparameter α, which is
empirically fixed for each dataset. Since wr is initialized to
a matrix filled with zeros, the re-parametrization is equiv-
alent to using a zero-shot initialization at the first iteration.
In addition, given a feature vector v of a support sample,
and optimizing wr via gradient descent using Eq. (2), it is
straightforward to derive that this term simply introduces a
scaling factor on a given learning rate η, and no additional
information is introduced to a simple Linear Probing:

wt
r = wt−1

r − η
∂H(y, ŷ)

∂wr
= wt−1

r − η
∂H(y, ŷ)

∂w

∂w

∂wr
=

wt−1
r − (η α)︸ ︷︷ ︸

learning rate

v (ŷ − y) .

(15)

Other related literature. Albeit proposed in the context of
full fine-tuning of vision-language models in the large data
regime, WiSE [36] approach also introduces some insights
on efficient adaptation using a simple linear classifier. In
particular, the authors study the benefit of linear interpola-
tion between fine-tuned and zero-shot (initial) weights. In
the case of adjusting uniquely a linear classifier, this method
would be equivalent to balancing the text embeddings and
the trained prototypes, such that w = α wLP + (1 − α) t.
Concretely, the ratio α is fixed using a validation subset af-
ter training, The idea that underlays this method aligns with
the observations derived from the few-shot adapters.



(a) CLIP-Adapter [11] (b) TIP-Adapter [42] (c) TIP-Adaper(f) [42]

(d) TaskRes [40] (e) CLAP (Ours)

Figure 2. Pitfalls of few-shot adapters due to the absence of a model selection strategy - Additional methods. The cross-shift model
selection matrices (i, j) depict the relative improvement w.r.t. a zero-shot initialized Linear Probing when using the optimal hyperparame-
ters for the dataset i, for adapting in another task j, for each SoTA method (first four plots) and our approach (last plot). This is an extended
version of Fig. 1 in the main manuscript.

A.2. Remaining close to the initial zero-shot proto-
types

As we stated previously, we observed that recently pro-
posed few-shot adapters benefit from a good initialization,
which is obtained from robust class-wise text embeddings.
Also, in the main manuscript, we introduce a revisited Lin-
ear Probing baseline tailored for vision-language models
(ZS-LP in Sec. 4.1). This method benefits from this good
initialization, together with other training heuristics. In-
deed, we demonstrate empirically in the experimental sec-
tion that it serves as a strong baseline for VLMs adaptation.
We now study the convergence of this method during adap-
tation (curves in Supp. Fig. 3), to shed light on the benefits
of using a good set of initial prototypes. Furthermore, our
goal is to expose that in different datasets, deviating much
from initial prototypes may, or may not, be beneficial. We
stress that, as a reminder, the more iterations are performed
during adaptation, the more the model predictions deviate
from initial zero-shot representations, which can also be
controlled with the step size, a.k.a., learning rate. First,
we can observe that, the zero-shot CLIP initialized Linear
Probe (orange line) achieves a maximum in performance
over test samples at different epochs, which do not corre-

spond to the convergence on the support set. Indeed, letting
the adaptation converge typically yields performance degra-
dation in ZS-LP. Even though this solution (i.e., maximum
performance on test samples) could be reached using a large
validation subset, which can be used for tuning the hyperpa-
rameters and early stopping, its presence is unrealistic on a
strict few-shot protocol. In contrast, it is worth mentioning
that the proposed learnable class-adaptative Linear Probing
(CLAP, see Sec. 4.3) prevents this degradation, and does not
require access to any additional data. Last, we would like to
highlight an interesting observation from the convergence
points seen in these curves. In particular, and interestingly,
the range of values for searching the corresponding hyper-
parameters in methods such as TIP-Adapter, varies with the
convergence scenario for the best test performance (more
details in the next section).

To provide further empirical evidence, we now study in
Supp. Fig. 4 the performance obtained by a zero-shot ini-
tialized Linear Probing (ZS-LP) with a fixed scheduler (see
Sec. 5.1 for details), just varying the initial learning rate.
Larger learning rates might produce solutions farther from
the initial data points, and vice-versa. In particular, we fo-
cus on two popular datasets used for adaptation: OxfordPets



ImageNet Flowers102

Food101 SUN397

Figure 3. Linear Probing learning curves. Results of Linear Probing-based methods when adapted to ImageNet using ResNet-50 as a
backbone, 16 shots per class as a support set, and a training scheduler using SGD. During training, both support set accuracy (top) and the
performance on the test subset (bottom) are monitored, and the maximum test accuracy is highlighted in the curves. The training scheduler
is described in Sec. 5.1.

[29] and Flowers102 [28]. The experimental results show
that even for Linear Probing, adjusting the training spec-
ifications per task leads to better test generalization. For
some datasets, such as OxfordPets, it is beneficial to under-
fit on the support set (see Supp. Fig. 4 top-left), and thus
using smaller learning rates is beneficial. In other cases,
such as FLowers102 (see Supp. Fig. 4 top-right), the degra-
dation from fitting to the support set is not observed. Thus,
each adaptation task presents its specific behavior. In a few-
shot setting, however, only the support set information is
available and model selection for a given adapter should
rely only on this data. It is worth mentioning that the pro-
posed class-adaptive solution (CLAP) is able to keep robust
performance in both cases, using the same training setting
across datasets.

A.3. SoTA methods: is it all about playing with
hyperparameters?

We previously introduced the methodological basis of SoTA
adapters in Supp. Sec. A.1, and the different hyperparam-

eters they use for model selection. Also, we have intro-
duced in Supp. Sec. A.2 that each adaptation dataset might
present different characteristics, and thus the optimum so-
lution might be closer or farther to the zero-shot CLIP ini-
tialization. For instance, the Flowers101 dataset presents a
particular behavior, which differs from other datasets (see
Supp. Fig. 4). Interestingly, for this dataset, our cross-shift
dataset experiments unveil that large performance drops are
experienced in SoTA methods when using the optimum hy-
perparameters found for other tasks (see Supp. Fig. 2). In
the following, we provide observational evidence that these
methods adjust specific hyperparameter values per dataset,
using prior knowledge from the test subset, which is unre-
alistic in practice.

CLIP-Adapter [11]. While an official implementation
of the training code is not available, authors explicitly
claim in the paper that: “We perform hyperparameter
searching over different value selections of α for each
dataset and report the best performance among all search-
ing spaces.” In addition, we only could replicate their re-



ZS-LP - OxfordPets ZS-LP - Flowers102

CLAP - OxfordPets CLAP - Flowers102

Figure 4. The trade-off between convergence on support set
and generalization for zero-shot initialized adapters. We depict
the performance on the support and test subsets (after training) of
zero-shot initialized Linear Probing adapters. Red numbers indi-
cate the initial learning rate used, on the fixed scheduler described
in Sec. 5.1. Two methods are presented: zero-shot initialized Lin-
ear Probe (ZS-LP, top, see Sec. 4.1), and class adaptive Linear
Probe (CLAP, bottom, see Sec. 4.3).

sults when directly adjusting the learning rate (swept among
{10−1, 10−2, 10−3}) and residual ratio (searching values
are αr ={0.2, 0.4, 0.6, 0.8, 1}) on a grid search at the test
subset.
TIP-Adapter [42]. The absence of any details in the orig-
inal publication regarding model selection strategies or the
use of validation subsets leaves the GitHub repository as the
only available documentation of the official implementa-
tion. In this repository, the authors claim (see Issue #13)2:
“The alpha and beta are both set to 1 as the tuning baseline.
The alpha weighs the importance of CLIP-pre-trained and
few-shot knowledge. If the few-shot domain has a large gap
to pre-trained data (general images, just like ImageNet),
alpha is better to be larger than 1.” This suggests no ex-
plicit strategy for model selection exists. In addition, the
official implementation contains a hyperparameter search
function that takes as input the test subset in the case of
ImageNet and a large validation subset for other tasks. It is
worth mentioning that the grid search boundaries per hy-
perparameter also depend on each specific task. For in-
stance, the αtipA parameter for ImageNet is searched be-
tween [1.17, 7], and for Flowers102 dataset the target range
is [10, 50], not presenting an overlapping at all. Interest-
ingly, αtipA controls the relative importance of the vision
logits, and larger weight values are searched on Flowers102,

2Recommendation provided in the official project repository: https:
//github.com/gaopengcuhk/Tip-Adapter/issues/13.

a dataset which, as we show in Supp. Fig. 4, benefits from
diverging from the zero-shot initialization. These details
suggest that the hyperparameters for TIP-Adapter methods
are fixed assuming prior knowledge of the test subset for
each particular task.
Task Residual Learning [42]. As previously described,
TaskRes is equivalent to a zero-shot initialized Linear Prob-
ing, and contains an α parameter that regulates the learning
rate per dataset. It is worth mentioning that the implemen-
tation details describe the use of different learning rates for
ImageNet adaptation (η = 2 · 10−4), and for other tasks
(η = 2 ·10−3), as well as different epochs depending on the
number of shots. In addition, it is stated that “By default,
the scaling factor α is set to 0.5 for all datasets except for
Flowers102 using 1”. This detail is especially relevant, as it
suggests the access to prior knowledge to test performance.
Again, a larger adaptation to the support samples is used for
the Flowers102 task, which aligns with the low transferabil-
ity of the hyperparameters set on this task to other datasets
in Fig. 2, as well as with the longer convergence on test
performance observed in this dataset (Supp. Fig. 3).

A.4. Choosing hyperparameters for a validation-
free benchmark

In this work, we seek to provide a realistic protocol for com-
paring few-shot vision-language adapters. In this setting,
we assume access to only the available support samples, and
no additional validation examples are used. Next, we de-
scribe the implementation details of the different baselines
and the motivation for the use of particular hyperparameter
values.

For CLIP-Adpater [11], we set the hyperparameter α to
0.2 for all datasets, as it is the best value found on Ima-
geNet evaluation in the original paper. The TIP-Adapter
[42] umbrella gathers two methods: training-free, and a
trainable version, i.e., TIP-Adapter(f), in which the support
samples embeddings are updated. For both methods, we
set β and α to 1, as recommended in the official repository
(see Supp. Footnote 2) . For TaskRes [40], we only used
as baseline its enhanced version, referred to as TaskRes(e)3,
which updates the projection layer of the text encoder. The
reason for not using the base version of TaskRes is moti-
vated by our findings that suggest that this method is equiv-
alent to a Linear Probe tuning with zero-shot initialization,
and a specific learning rate scaling for each dataset (see

3The training code for TaskRes(e) base is not provided in the official
implementation (https://github.com/geekyutao/TaskRes)
and might contain specific tuning that indirectly resorts to the test set. Au-
thors uniquely share the enhanced weights, and the lack of specific imple-
mentation details might produce unfair comparisons. The only information
available in the manuscript is: “... enhanced base classifier obtained by
tuning the text projection layer of CLIP on the target task before starting
our task residual tuning ... The aforementioned enhanced base classifier is
tuned for 50 epochs”.



Supp. Sec. A.1). We set α to 0.5 in TaskRes(e) since this
is the value used in the majority of the tasks in the origi-
nal publication. Finally, we included Cross-Modal adapters
[24], in particular the Linear Probing version, which does
not require special hyperparameter tuning. To avoid using
an empirical grid search for weight decay, we implicitly ap-
plied an ℓ2-normalization over the weights during training,
which provided a better performance on our ablation experi-
ments (see Sec. 5.3). All methods are trained using the same
general optimizer and scheduler as our proposed methods,
which showed proper convergence on the support set, and
all baselines employ the same text prompts for each dataset.

A.5. Trainable parameters

Efficient transfer learning ought to exploit limited supervi-
sion during adaptation while being efficient in the number
of trainable parameters. We depict in Supp. Fig. 5, a visu-
alization of the trade-off between the number of trainable
parameters and test performance of relevant prior meth-
ods, and the proposed class adaptive Linear Probing (CLAP,
see Sec. 4.3). All results are obtained in the validation-
free protocol, using the implementation details described in
Sec. 5.1. While CLIP-Adapter is a specially lightweight so-
lution, the obtained performance is limited with respect to
the proposed method (CLAP), and even a well-initialized
Linear Probing (ZS-LP). On the other hand, TIP-Adapter
largely increases the number of tunable weights with the
number of shots, which questions its transferability to other
tasks, such as dense image segmentation, in which each
pixel prototype would constitute an individual parameter. In
contrast, CLAP just introduces a negligible set of additional
trainable multipliers - one per class - over a Linear Probing
solution, which considerably enhances its performance.

B. Penalty functions for ALM: axioms

In this section, we provide the requirements for a penalty
function in the Augmented Lagrangian Multiplier (ALM)
method, detailed in Sec. 4.3.

A function P : R × R++ × R++ → R is a Penalty-
Lagrangian function such that P ′(z, ρ, λ) ≡ ∂

∂zP (z, ρ, λ)
exists and is continuous for all z ∈ R, ρ ∈ R++ and λ ∈
R++. In addition, a penalty function P should satisfy the
following four axioms [2]:
Axiom 1: P ′(z, ρ, λ) ≥ 0 ∀z ∈ R, ρ ∈ R++, λ ∈ R++

Axiom 2: P ′(0, ρ, λ) = λ ∀ρ ∈ R++, λ ∈ R++

Axiom 3: If, for all j ∈ N, λ(j) ∈ [λmin, λmax], where
0 < λmin ≤ λmax <∞, then:

lim
j→∞

ρ(j) = ∞ and lim
j→∞

y(j) > 0 imply that

lim
j→∞

P ′(y(j), ρ(j), λ(j)) = ∞

Axiom 4: If, for all j ∈ N, λ(j) ∈ [λmin, λmax], where
0 < λmin ≤ λmax <∞, then:

Figure 5. Trade-off between number of shots, trainable pa-
rameters, and adaptation performance. The test accuracy is
presented with respect to the number of trainable parameters
for CLIP-Adapter [11], TIP-Adapter(f) [42], and the two pro-
posed solutions in this work: a revisited Linear Probing (ZS-LP,
see Sec. 4.1), and a class-adaptive Linear Probing (CLAP, see
Sec. 4.3). Results were obtained for 1 to 8 shots in the ImageNet
dataset.

lim
j→∞

ρ(j) = ∞ and lim
j→∞

y(j) < 0 imply that

lim
j→∞

P ′(y(j), ρ(j), λ(j)) = 0.

The first two axioms guarantee that the derivative of the
Penalty-Lagrangian function P w.r.t. z is positive and
equals to λ when z = 0. The last two axioms guarantee
that the derivative tends to infinity when the constraint is
not satisfied, and zero otherwise.

C. Supplementary experimental details

C.1. Additional setup information

Datasets details. In our main text, we introduce the
datasets employed to evaluate the proposed methods and
establish comparisons with relevant literature on the few-
shot adaptation of CLIP-based models. In Supp. Tab. 6,
we introduce the specific details of each dataset, including
the number of categories, test partition size, and particular
tasks.

Text prompt templates. We followed the same hand-
crafted templates as relevant prior literature of efficient
transfer learning for the 11 datasets. Concretely, we fol-
lowed CoOp [46], TIP-Adapter [42] TaskRes [40], and
CrossModal hand-crafted version [24]. These prompts
are composed of an ensemble of 8 different templates for
Imagenet-like datasets, and 1 template for the others, which
are depicted in Supp. Tab. 6. It is worth mentioning that



Table 6. Summary of datasets details. Detailed description of the 11 datasets used to validate the SoTA few-shot adapters of VLMs, and
4 ImageNet shifts employed to evaluate the generalization capabilities of those. Also, handcrafted prompts used to obtain the zero-shot
predictions and prototypes are detailed. These are the same ones used in relevant prior literature on this topic [24, 40, 46].

Dataset Classes Splits
Train / Val / Test Task Prompt

Templates

ImageNet [8] 1000 1.28M / - / 50,000 Natural objects recognition [“itap of a [CLS]” , “a bad photo of a [CLS]” ,
“a origami of [CLS]” , “a photo of the large [CLS]” ,
“a [CLS] in a video game” , “art of the [CLS]” ,
“a photo of the small [CLS]” , “a photo of a [CLS]”]

ImageNet-V2 [31] 1000 - / - / 10,000 Natural objects recognition
ImageNet-Sketch [35] 1000 - / - / 50,889 Sketch-style image classification
ImageNet-A [16] 200 - / - / 7,500 Natural objects recognition
ImageNet-R [17] 200 - / - / 30,000 Natural objects recognition

Caltech101 [10] 100 4,128 / 1,649 / 2,465 Natural objects classification [“a photo of a [CLS]”]
OxfordPets [29] 37 2,944 / 736 / 3,669 Pets classification (fine-grained) [“a photo of a [CLS], a type of a pet”]
StanfordCars [21] 196 6,509 / 1,635 / 8,041 Cars classification (fine-grained) [“a photo of a [CLS]”]
Flowers102 [28] 102 4,093 / 1,633 / 2,463 Flowers classification (fine-grained) [“a photo of a [CLS], a type of flower” ]
Food101 [4] 101 50,500 / 20,200 / 30,300 Foods classification (fine-grained) [“a photo of a [CLS], a type of food”]
FGVCAircraft [26] 100 3,334 / 3,333 / 3,333 Aircrafts classification (fine-grained) [“a photo of a [CLS], a type of aircraft”]
SUN397 [37] 397 15,880 / 3,970 / 19,850 Scenes classification [“a photo of a [CLS]”]
DTD [7] 47 2,820 / 1,128 / 1,692 Textures classification [“[CLS] texture”]
EuroSAT [15] 10 13,500 / 5,400 / 8,100 Satellite image classification [“a centered satellite photo of [CLS]”]
UCF101 [33] 101 7,639 / 1,898 / 3,783 Recognition of actions [“a photo of a person doing [CLS]”]

fine-tuning methods used for the benchmark in Sec. 5.2 (LP-
FT [22], FLYP [12]) use a larger set of 80 prompt templates
for ImageNet-like datasets, although these are not usually
used in the efficient transfer learning literature.

C.2. Results: supplementary details

Efficient transfer learning. We provide detailed nu-
merical results for the few-shot adaptation experiments
using relevant baselines and the proposed methods in
Supp. Tab. 9, which extend the values reported in Tab. 1.
Furthermore, we also depict visual curves of the perfor-
mance with respect to the number of shots employed by
each method in Supp. Fig. 8.

Domain generalization. We show in the main manuscript
the domain generalization results using adapters adjusted
to ImageNet and evaluated on out-of-distribution shifts
(i.e., ImageNet variants). These results are obtained using
ResNet-50 and ViT-B/16 CLIP backbones. In the follow-
ing, we introduce detailed results per dataset, and two ad-
ditional backbones: ResNet-101 and ViT-B/32, whose re-
sults are reported in Tab. 10. We can observe that the re-
sults using these additional backbones hold the conclusions
elucidated in the main manuscript. In particular, relevant
prior methods such as CLIP-Adapter [11] and TIP-Adapter
[42] struggle to generalize properly when their hyperparam-
eter setting is held on different backbones than the one used
for development, ResNet-50. This is especially the case for
Transformer backbones, such as ViT-B/32, which suggests
again that existing adapter methods need special care for
model selection across each dataset.

Finetuning (FT) vs. efficient transfer learning (ETL),
beyond few-shots. Fine-tuning a whole vision encoder to
downstream tasks using a few-shot training subset has been

historically less favored compared to efficient transfer learn-
ing strategies, due to the tendency of FT methods to overfit
to the new data, and thus generalizing poorly. Neverthe-
less, a relevant core of recent literature for VLMs adapta-
tion [12, 22, 36] is showing promising results on this task.
As stated in the main body of the paper, this is due to (i)
using a few-shot validation dataset, with which they early-
stop the training, and (ii) employing small learning rates to
not deviate from a good initialization. Nevertheless, if com-
pared properly in the low data regime, i.e., using 4 shots for
training and 4 samples per class for validation, and allow-
ing ETL methods that do not require a validation set to use
all samples for training, then ETL still seems to yield com-
petitive performance, being a much more computationally-
efficient solution. The results previously presented in the
main body of the manuscript (see Tab. 3) support these ob-
servations.

We now extend this comparison to a scenario in which
more data is available. Concretely, a 32-shot scenario,
where FT methods use half of it for validation. It is worth
mentioning that this experimental setting on ImageNet re-
quired 32,000 images (16,000 for validation), which might
be hardly considered a few-shot learning protocol. We in-
troduce specific results using 32-shot for ImageNet and its
distributional shifts for relevant baselines and the proposed
methods in Supp. Tab. 7. It is worth mentioning that FT
methods use 16-shots for training and another 16-shots for
validation. In addition, we present in Supp. Fig. 6 a study
of the performance evolution with respect to the number
of shots of relevant FT methods with an increasing num-
ber of parameters. More concretely, we include LP-FT
[22], which completely fine-tunes the CLIP’s vision back-
bone, and FLYP [12], which trains both vision and text
encoders. We compare these results to the proposed class
adaptive Linear Probing (CLAP), which only adjusts the



classifier head, and thus brings a negligible computational
overhead compared to LP-FT and FLYP. In the 32-shot set-
ting, CLAP shows competitive performance compared to
methods that adjust the vision encoder entirely, such as FT,
LP-FT [22], and WiSE-FT [36], for both in-distribution and
out-of-distribution datasets, while adjusting only the linear
classification head. Only FLYP [12], which requires fine-
tuning both vision and text encoders, outperforms CLAP us-
ing 32,000 images, and by a small margin: 1.2% in ID, and
1.6% in OOD. Nevertheless, this comes at the cost of adjust-
ing the entire CLIP model, which entails a non-negligible
computational overhead, making this method an inefficient
approach in low-resource scenarios. Note that CLAP is two
orders of magnitude lighter than FLYP. In addition, CLAP
does not exhibit signs of performance saturation (as LP-FT,
for example) with an increase in the number of shots (see
Supp. Fig. 6).

Figure 6. Finetuning (FT) vs. efficient transfer learning (ETL),
performance and trainable parameters. We compare the gen-
eralization performance of relevant full fine-tuning methods, i.e.,
LP-FT [22] and FLYP [12], and the proposed efficient transfer
learning method CLAP (see Sec. 4.3), trained on ImageNet and
evaluated on OOD shifts. Relative point size is illustrated as the
log ratio of the number of tunable parameters of each method with
respect to CLAP. MP: millions of parameters.

C.3. Supplementary ablation experiments

Distilling reliable knowledge. We now study the effect of
resorting to a class-adaptive constrained formulation in the
proposed CLAP. In particular, we further assess the benefits
of using our class-dependent adaptive scaling (λ⋆) of the
imposed constraint, which is initialized on the performance
of the zero-shot CLIP prototypes on the support set. To do
so, we take as baseline different empirically-set multipliers
baselines. First, we explore a homogeneous weight for all
classes, such that λ = 1. Furthermore, we aim to disentan-
gle two different effects that λ⋆ might have: (i) changing

Table 7. Finetuning (FT) vs. efficient transfer learning (ETL),
beyond few-shots. Benchmark for the not-so-low data regime,
i.e., 32 shots for each class. FT methods (above the dashed line)
are trained with 16 shots and early-stopped using a validation set
containing 16 shots. WiSE-FT and FLYP use weight ensembling
as proposed in [36], and therefore, find the best mixing coefficient
α using the validation set. On the other hand, ETL methods (be-
low the dashed line) are trained using all the 32 shots given. All
methods use ViT-B/16 as CLIP backbone.

Method Source Target
Imagenet -V2 -Sketch -A -R Avg.

FT 71.86 64.15 47.97 48.23 75.96 59.08
LP-FT [22] 74.36 66.43 49.35 49.84 76.89 60.63
WiSE-FT [36] 73.06 65.70 50.03 51.04 78.22 61.25
FLYP [12] 75.63 68.17 50.66 52.09 78.49 62.35
Zero-Shot 68.71 60.76 46.18 47.76 73.98 57.17
LP 67.40 56.43 31.71 31.92 51.04 42.71
ZS-LP 71.53 56.59 40.84 41.41 67.98 51.71
CLAP 74.40 66.05 49.16 49.82 77.52 60.64
*Specific numbers for FT, LP-FT, WiSE-FT, and FLYP are retrieved from [12].

the overall relative importance of the constraint term with
respect to the cross-entropy term in Eq. (7); and, (ii) provid-
ing the capability of capturing class dependent prior knowl-
edge from the pre-trained model. Thus, we further include
two alternative ways of computing λ in our ablation study:
(i) a constant version of the constraint formulation, in which
all multipliers are set to a constant λavg = 1

C

∑
c λ

⋆
c , i.e.,

the average importance of the constraint; and, (ii) an im-
portance corrected version of the constrained formulation,
λcorr = λ⋆/λavg , such that 1

C

∑
i λ

corr
i = 1. The average

performance over 11 datasets for the few-shot data regime
is shown in Supp. Fig. 7, whereas the full numerical results
per dataset are presented in Supp. Tab. 11.

Figure 7. Ablation study on different alternatives to compute
initial λ in Eq. (7). The average performance over 11 datasets is
reported.



In the special case of 1-shot or 2-shot, adaptive computa-
tion of λ may lead to a slight overfitting to the information
provided by the few samples, even though the performance
gap compared to other strategies is minimal. The more shots
provided, the less noisy the information will be and comput-
ing class-dependent adaptive importance will prove more
useful. Looking at the plots, except for the 1-shot setting,
using λ = 1 is always suboptimal. In the 2-shot scenario,
using λavg. for all classes yields the best results, although
close to the performance of the proposed λ⋆. Generally,
when the number of labeled samples per class is particu-
larly low, the proposed λ⋆ is not the best-performing option.
However, it proves superior to other alternatives when 4 or
more shots are given, and the gap widens as the number of
shots increases. It is worth noting that the non-constrained
(ZS-LP) version’s performance approaches the constrained
version in the 16-shot setting, but it underperforms in the
lower data regimes, which demonstrates the effectiveness
of our formulation across the different regimes.

Table 8. Augmented Lagrangian multiplier optimization. We
present ablation experiments that motivate the use of only one
outer iteration in Eq. (9), which prevents overfitting on the support
samples, due to the absence of a validation subset in the realistic
few-shot scenario. K denotes the number of shots.

Method K=1 K=2 K=4

ZS-LP 61.28 64.88 67.98
CLAP - Full outer loop 61.97(+0.7)↑ 63.25(−1.6)↓ 63.83(−4.2)↓
CLAP - 1 outer loop (Ours) 62.79(+1.5)↑ 66.07(+1,2)↑ 69.13(+1.2)↑

Updating the Lagrangian multipliers beyond the first
iteration. The proposed class adaptive Linear Probing
(CLAP) is based on an adaptation of the general Augmented
Lagrangian Multiplier method, which learns the multiplier
weights per class accounting for the particular difficulty of
each category. Given the strict few-shot setting used, we
propose to use the support samples to validate the satisfac-
tion of the constrained problem. We hypothesized, how-
ever, that doing this could increase the risk of overfiting and
proposed to stop after one single iteration of the outer opti-
mization iteration in Eq. (9) (i.e., the step where the penalty
multiplies λ are updated). In this section, we provide the
empirical evidence for this hypothesis, which validates our
choice. In particular, we also perform the adaptation using
both inner and outer iterations during the whole adaptation
process. To do so, at each epoch, the Lagrangian multipliers
are updated following Eq. (10). Regarding the penalty mul-
tipliers ρ, these are initialized per class to the initial penalty
value, and for each epoch, their value is fixed after updat-
ing the penalty multipliers to the resulting penalty after the
inner iteration. Results are reported in Tab. 8, which show
that updating these parameters continuously, based on the
support set, results in overfitting and thus provides worse
generalization.



Table 9. Efficient transfer learning performance. Full numerical performance comparison on the few-shot setting, using ResNet-50 as
the backbone. All experiments are run with a fixed configuration, and training is done until full convergence on the support set. Results are
averaged across 3 random seeds. Results for CoOp and PLOT are directly extracted from [6].

Method Setting ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAAircraft SUN397 DTD EuroSAT UCF101 Average

CoOp IJCV’22[46] 56.99±1.03 87.51±1.02 85.99±0.28 55.81±1.67 67.98±1.98 74.25±1.52 8.59±5.79 60.12±0.82 43.62±1.96 52.12±5.46 62.13±1.14 59.56±2.06

PLOT ICLR’23[6] 59.54±0.16 89.83±0.33 87.49±0.57 56.60±0.36 71.72±0.97 77.74±0.47 17.90±0.09 62.47±0.43 46.55±2.62 54.05±5.95 64.53±0.70 62.59±1.13

Zero-Shot ICML’21[30]

1-shot

60.35±0.00 83.81±0.00 82.86±0.00 55.69±0.00 65.94±0.00 74.85±0.00 17.16±0.00 56.80±0.00 42.32±0.00 37.53±0.00 57.47±0.00 57.71±0.00

Rand. Init LP ICML’21[30] 17.62±0.01 56.82±1.65 26.61±0.50 18.41±0.95 53.42±2.84 23.92±0.86 12.14±0.35 26.66±0.49 26.69±1.22 40.69±4.58 31.69±0.39 30.42±1.26

CLIP-Adapter IJCV’23[11] 54.74±0.19 86.80±0.10 74.45±1.57 53.07±0.37 71.57±0.78 66.78±0.76 17.01±0.06 59.10±0.17 41.80±1.84 57.92±1.68 59.49±0.33 58.43±0.71

TIP-Adapter ECCV’22[42] 60.35±0.08 84.44±0.35 83.18±1.01 56.32±0.47 67.45±0.16 74.69±0.15 17.69±0.26 58.41±0.04 44.03±0.30 42.08±3.08 58.79±0.06 58.86±0.54

TIP-Adapter(f) ECCV’22[42] 60.51±0.06 85.50±0.46 83.90±0.92 56.71±0.50 68.60±0.70 74.76±0.15 18.33±0.57 58.73±0.03 44.64±0.29 51.11±2.24 60.38±0.33 60.29±0.57

TaskRes(r) CVPR’23[40] 57.91±0.25 87.99±0.11 77.94±2.58 55.25±0.49 79.62±0.45 70.60±0.35 20.30±0.81 60.99±0.19 46.59±1.51 55.60±1.70 61.32±0.75 61.28±0.84

TaskRes(e) CVPR’23[40] 58.21±0.19 88.01±0.18 78.01±2.55 55.36±0.48 79.83±0.54 70.60±0.37 20.50±0.82 61.33±0.09 46.63±1.49 55.75±1.67 61.59±0.80 61.44±0.83

CrossModal-LP CVPR’23[24] 57.40±0.11 88.06±0.54 80.09±1.41 57.43±0.45 78.51±0.54 73.00±0.18 20.72±0.29 61.32±0.11 47.81±1.52 56.85±3.36 63.49±0.23 62.24±0.79

ZS-LP 57.91±0.25 87.98±0.13 77.96±2.57 55.24±0.46 79.62±0.47 70.60±0.35 20.30±0.81 61.00±0.19 46.59±1.51 55.57±1.71 61.34±0.73 61.28±0.83

CLAP 58.50±0.24 88.38±0.25 83.64±1.18 56.35±0.40 79.90±0.46 73.00±0.14 20.62±0.55 61.15±0.18 47.46±1.15 59.21±0.82 62.48±0.99 62.79±0.58

CoOp IJCV’22[46] 56.40±0.87 87.84±1.10 82.22±2.15 58.41±0.43 77.58±1.46 72.61±1.33 16.52±2.38 59.60±0.76 45.35±0.31 59.00±3.48 64.05±0.99 61.78 ±1.39

PLOT ICLR’23[6] 60.64±0.06 90.67±0.21 86.64±0.63 57.52±0.71 81.19±0.79 77.70±0.02 18.94±0.44 61.71±0.65 51.24±1.95 64.21±1.90 66.83±0.43 65.23±0.72

Zero-Shot ICML’21[30]

2-shot

60.35±0.00 83.81±0.00 82.86±0.00 55.69±0.00 65.94±0.00 74.85±0.00 17.16±0.00 56.80±0.00 42.32±0.00 37.53±0.00 57.47±0.00 57.71±0.00

Rand. Init LP ICML’21[30] 26.91±0.36 69.29±3.92 38.88±2.99 31.62±1.20 66.38±0.52 37.99±1.24 16.61±0.75 38.97±0.75 36.98±0.19 51.73±1.22 45.15±0.39 41.86±1.26

CLIP-Adapter IJCV’23[11] 54.20±0.31 88.22±0.67 77.03±2.53 58.62±0.37 80.39±0.66 69.43±0.57 20.07±0.65 60.22±0.65 49.51±0.21 63.95±1.84 65.43±0.33 62.46±0.71

TIP-Adapter ECCV’22[42] 60.18±0.15 85.76±0.64 83.28±0.70 56.97±0.06 68.78±0.14 74.94±0.04 18.70±0.18 60.03±0.18 45.04±0.10 50.07±0.30 59.88±0.06 60.33±0.54

TIP-Adapter(f) ECCV’22[42] 60.69±0.14 87.45±0.36 84.86±0.47 58.14±0.05 70.51±0.05 75.65±0.25 19.77±0.26 61.26±0.26 48.25±0.13 55.08±0.29 63.24±0.33 62.26±0.57

TaskRes(r) CVPR’23[40] 57.86±0.05 89.26±0.21 80.59±1.57 60.69±0.41 84.48±0.20 72.94±0.36 23.16±0.36 62.61±0.35 51.79±0.20 63.06±1.51 67.26±0.75 64.88±0.84

TaskRes(e) CVPR’23[40] 58.08±0.12 89.37±0.33 80.80±1.54 61.56±0.84 85.49±0.68 73.06±0.49 23.55±0.49 63.06±0.65 52.17±0.39 63.33±1.49 67.39±0.80 65.26±0.83

CrossModal-LP CVPR’23[24] 49.13±0.20 89.55±0.36 81.72±0.72 61.76±0.27 82.30±0.55 74.31±0.32 22.46±0.30 63.91±0.24 53.09±1.44 62.91±1.41 68.13±0.67 64.48±0.59

ZS-LP 57.85±0.04 89.26±0.21 80.56±1.58 60.69±0.42 84.46±0.19 72.94±0.35 23.18±0.35 62.61±0.36 51.79±0.20 63.06±1.51 67.23±0.73 64.88±0.83

CLAP 58.50±0.24 89.79±0.15 84.93±0.66 61.40±0.38 84.22±0.35 74.94±0.24 23.21±0.24 63.31±0.32 53.05±0.13 65.63±1.15 67.77±0.99 66.07±0.58

CoOp IJCV’22[46] 58.48±0.47 89.52±0.80 86.65±0.97 62.74±0.16 86.10±1.05 73.49±2.03 20.63±2.46 63.24±0.63 53.94±1.37 68.61±3.54 67.79±0.71 66.47±1.29

PLOT ICLR’23[6] 61.49±0.23 90.80±0.20 88.63±0.26 63.41±0.29 87.82±0.20 77.21±0.43 22.36±0.42 65.09±0.43 56.03±0.43 72.36±2.29 69.60±0.67 68.60±0.52

Zero-Shot ICML’21[30]

4-shot

60.35±0.00 83.81±0.00 82.86±0.00 55.69±0.00 65.94±0.00 74.85±0.00 17.16±0.00 56.80±0.00 42.32±0.00 37.53±0.00 57.47±0.00 57.71±0.00

Rand. Init LP ICML’21[30] 36.98±0.57 78.11±2.90 50.00±2.03 44.75±0.28 77.21±1.15 50.10±0.96 21.08±0.79 49.63±0.69 47.97±0.40 58.51±4.06 54.26±0.46 51.69±1.30

CLIP-Adapter IJCV’23[11] 55.66±0.31 90.39±0.26 79.99±1.69 61.04±0.59 85.28±0.57 72.10±0.12 23.03±0.08 62.85±0.32 55.89±0.88 72.49±3.30 69.28±0.16 66.18±0.75

TIP-Adapter ECCV’22[42] 60.18±0.08 86.98±0.40 82.27±1.21 57.70±0.76 69.81±0.62 74.65±0.24 19.60±0.46 61.42±0.41 47.18±0.50 54.29±3.66 62.26±0.26 61.49±0.78

TIP-Adapter(f) ECCV’22[42] 61.45±0.05 88.84±0.78 85.51±0.57 61.09±0.50 74.39±0.08 75.25±0.20 21.87±0.69 64.23±0.16 53.45±0.27 66.77±3.38 65.70±0.29 65.32±0.63

TaskRes(r) CVPR’23[40] 57.88±0.18 90.37±0.34 82.76±1.02 63.73±0.38 88.44±0.65 74.41±0.33 25.59±0.43 64.70±0.38 57.58±0.20 72.77±3.42 69.58±0.25 67.98±0.69

TaskRes(e) CVPR’23[40] 58.02±0.26 90.49±0.41 83.24±1.08 64.69±0.53 89.38±0.81 74.46±0.15 25.89±0.47 64.83±0.10 57.98±0.22 72.95±3.35 69.88±0.43 68.35±0.71

CrossModal-LP CVPR’23[24] 42.15±0.21 90.40±0.25 84.56±0.94 65.18±0.14 85.00±0.59 75.66±0.36 24.44±0.41 66.09±0.42 58.41±0.20 71.72±2.42 69.74±0.55 66.67±0.59

ZS-LP 57.88±0.18 90.36±0.35 82.76±1.02 63.73±0.37 88.47±0.65 74.41±0.33 25.57±0.45 64.70±0.38 57.58±0.20 72.78±3.44 69.55±0.26 67.98±0.69

CLAP 60.73±0.20 90.62±0.46 86.51±0.32 65.50±0.26 87.66±0.85 75.92±0.16 25.65±0.67 65.99±0.31 58.85±0.06 73.15±2.34 69.88±0.26 69.13±0.54

CoOp IJCV’22[46] 60.39±0.57 90.28±0.42 85.36±1.00 67.64±0.06 91.27±0.83 71.58±0.79 26.63±0.86 65.77±0.02 59.69±0.13 77.08±2.42 72.71±0.50 69.85±0.69

PLOT ICLR’23[6] 61.92±0.09 91.54±0.33 87.39±0.74 67.03±0.50 92.43±0.25 75.31±0.30 26.17±0.29 67.48±0.04 61.70±0.35 78.15±0.00 74.45±0.50 71.23±0.51

Zero-Shot ICML’21[30]

8-shot

60.35±0.00 83.81±0.00 82.86±0.00 55.69±0.00 65.94±0.00 74.85±0.00 17.16±0.00 56.80±0.00 42.32±0.00 37.53±0.00 57.47±0.00 57.71±0.00

Rand. Init LP ICML’21[30] 45.06±0.42 84.00±2.38 61.65±1.37 58.06±0.23 87.47±0.55 59.65±0.14 27.99±0.49 57.18±0.38 55.24±1.13 67.34±4.76 65.58±0.53 60.84±1.13

CLIP-Adapter IJCV’23[11] 56.95±0.24 91.33±0.24 83.39±0.51 66.83±0.80 91.93±0.40 72.11±0.19 27.89±0.65 65.09±0.21 61.37±1.25 78.49±1.67 73.23±1.46 69.87±0.69

TIP-Adapter ECCV’22[42] 59.44±0.14 88.26±0.33 82.27±1.21 57.63±0.51 73.76±0.31 73.87±0.34 19.36±0.41 63.13±0.25 51.52±0.27 62.30±1.19 63.15±1.02 63.15±0.54

TIP-Adapter(f) ECCV’22[42] 61.80±0.05 90.53±0.28 85.60±0.35 64.42±0.06 84.33±0.23 74.95±0.66 23.79±0.48 66.97±0.09 59.81±0.46 70.34±4.31 69.33±1.04 68.35±0.73

TaskRes(r) CVPR’23[40] 59.10±0.19 91.62±0.29 85.77±0.39 69.29±0.10 93.94±0.31 74.52±0.29 29.58±0.81 67.07±0.04 63.18±0.99 78.55±3.05 73.06±0.85 71.43±0.66

TaskRes(e) CVPR’23[40] 59.12±0.15 91.94±0.24 85.74±0.35 69.65±0.47 94.29±0.37 74.36±0.26 30.91±0.60 66.31±0.25 63.48±0.51 78.83±2.89 73.64±0.35 71.66±0.59

CrossModal-LP CVPR’23[24] 46.81±0.11 91.76±0.06 86.74±0.45 69.34±0.52 92.87±0.24 76.12±0.22 28.27±0.79 68.20±0.29 62.61±0.82 77.73±2.72 73.55±0.53 70.36±0.61

ZS-LP 59.10±0.19 91.62±0.29 85.80±0.40 69.29±0.12 93.94±0.29 74.51±0.28 29.59±0.82 67.08±0.04 63.18±0.99 78.55±3.04 73.05±0.88 71.43±0.67

CLAP 62.98±0.13 91.45±0.05 87.75±0.40 70.35±0.30 92.06±0.43 77.42±0.31 28.97±0.89 68.61±0.20 63.24±0.65 76.66±2.78 73.34±0.49 72.08±0.60

CoOp IJCV’22[46] 61.91±0.17 91.99±0.31 87.02±0.89 73.60±0.19 94.49±0.40 74.48±0.15 31.43±0.96 68.36±0.66 62.51±0.25 83.69±0.47 76.90±0.50 73.33±0.42

PLOT ICLR’23[6] 63.01±0.13 92.24±0.38 87.21±0.40 72.80±0.75 94.76±0.34 77.09±0.18 31.49±0.89 69.96±0.24 65.60±0.82 82.23±0.91 77.26±0.64 73.94±0.54

Zero-Shot ICML’21[30]

16-shot

60.35±0.00 83.81±0.00 82.86±0.00 55.69±0.00 65.94±0.00 74.85±0.00 17.16±0.00 56.80±0.00 42.32±0.00 37.53±0.00 57.47±0.00 57.71±0.00

Rand. Init LP ICML’21[30] 52.24±0.10 87.55±2.32 71.63±0.95 69.20±0.62 92.73±0.58 66.92±0.47 34.63±0.89 63.07±0.10 60.60±1.08 73.38±1.38 70.94±0.44 67.54±0.81

CLIP-Adapter IJCV’23[11] 59.02±0.15 92.28±0.21 84.92±0.74 73.49±0.57 94.56±0.30 73.96±0.18 34.19±0.65 68.14±0.20 65.70±0.24 83.24±0.56 77.30±0.37 73.35±0.38

TIP-Adapter ECCV’22[42] 57.81±0.18 88.44±0.37 81.09±1.89 58.83±0.38 78.41±0.53 72.96±0.42 21.96±0.56 64.00±0.26 54.79±0.66 67.90±2.32 64.52±0.97 64.61±0.78

TIP-Adapter(f) ECCV’22[42] 62.27±0.13 91.22±0.43 85.43±0.59 69.56±0.36 91.18±0.27 74.65±0.34 29.32±0.64 68.90±0.05 64.56±0.32 76.55±1.44 71.81±0.70 71.40±0.48

TaskRes(r) CVPR’23[40] 61.01±0.11 93.00±0.07 86.28±0.35 75.48±0.10 95.82±0.29 75.86±0.04 34.82±0.89 69.72±0.03 66.45±0.33 83.15±0.14 76.54±0.42 74.38±0.25

TaskRes(e) CVPR’23[40] 60.85±0.12 93.09±0.17 86.28±0.21 75.38±0.03 96.14±0.37 75.43±0.07 36.53±0.31 68.43±0.11 65.88±0.28 83.70±0.38 76.96±0.07 74.42±0.19

CrossModal-LP CVPR’23[24] 52.90±0.10 92.77±0.04 87.48±0.14 75.44±0.33 95.20±0.23 77.14±0.16 33.30±0.26 70.56±0.12 66.92±0.56 82.03±0.99 76.40±0.28 73.65±0.29

ZS-LP 61.00±0.11 92.98±0.09 86.27±0.33 75.49±0.09 95.82±0.29 75.86±0.04 34.82±0.86 69.72±0.04 66.43±0.30 83.16±0.13 76.54±0.42 74.37±0.25

CLAP 65.02±0.06 91.93±0.18 88.51±0.16 75.12±0.21 94.21±0.13 78.55±0.07 33.59±0.86 70.78±0.05 66.41±0.74 80.07±0.39 76.29±0.21 74.57±0.28



Figure 8. Efficient transfer learning Results. Performance comparison of relevant literature, and the proposed methods for few-shot
efficient transfer learning from ResNet-50 CLIP to 11 downstream datasets, using from 1 to 16 shots per class. Average results are depicted
in te top-left corner. Full numerical results are introduced in Supp. Tab. 9.



Table 10. Domain generalization results. Adapters are adjusted on ImageNet using 16 shots per class, and evaluated at out-of-distribution
generalization on 4 ImageNet shifts with multiple CLIP visual backbones. Bold indicates best performance. Relative improvements are
obtained for each adapter with respect to no adaptation, i.e., zero-shot prediction.

Method Visual Backbone Source Target
Imagenet -V2 -Sketch -A -R Avg.

Zero-Shot ICML’21[30]

ResNet-50

60.35 51.49 33.33 21.67 55.93 40.61
Rand. Init LP ICML’21[30] 52.24(−8.11)↓ 41.85 15.93 10.72 29.95 24.61(−16.00)↓
CLIP-Adapter IJCV’23[11] 59.02(−1.33)↓ 48.15 14.63 15.75 46.29 31.21(−9.40)↓
TIP-Adapter ECCV’22[42] 57.81(−2.54)↓ 50.32 33.59 21.88 56.98 40.69(+0.08)↑
TIP-Adapter(f) ECCV’22[42] 62.27(+1.92)↑ 53.99 33.75 20.48 57.22 41.36(+0.75)↑
TaskRes(e) CVPR’23[40] 60.85(+0.50)↑ 56.47 32.80 19.90 55.93 41.28(+0.67)↑
ZS-LP 61.00(+0.65)↑ 51.09 27.90 16.95 50.37 36.58(−4.03)↓
CLAP 65.02(+4.67)↑ 56.09 34.55 21.52 59.48 42.91(+2.30)↑

Zero-Shot ICML’21[30]

ResNet-101

62.66 54.86 38.69 28.01 64.44 46.50
Rand. Init LP ICML’21[30] 57.51(−5.15)↓ 44.96 22.61 16.00 40.20 30.94(−15.56)↓
CLIP-Adapter IJCV’23[11] 61.87(−0.79)↓ 52.87 32.49 21.74 54.91 40.50(−6.00)↓
TIP-Adapter ECCV’22[42] 60.83(−1.83)↓ 53.24 38.64 28.88 65.07 46.46(+0.04)↓
TIP-Adapter(f) ECCV’22[42] 65.13(+2.47)↑ 56.48 38.64 26.48 64.57 46.54(+0.04)↑
TaskRes(e) CVPR’23[40] 66.10(+3.44)↑ 56.56 36.76 24.75 61.52 44.90(−1.60)↓
ZS-LP 63.79(+1.13)↑ 53.74 33.64 22.89 58.07 42.09(−4.41)↓
CLAP 67.93(+5.27)↑ 58.98 40.68 28.35 67.10 48.78(+2.28)↑

Zero-Shot ICML’21[30]

ViT-B/32

63.74 54.81 40.84 29.64 66.03 47.83
Rand. Init LP ICML’21[30] 56.87(−6.87)↓ 46.50 23.44 16.64 41.13 31.93(−15.90)↓
CLIP-Adapter IJCV’23[11] 62.70(−1.04)↓ 52.93 34.27 23.58 57.58 42.09(−5.74)↓
TIP-Adapter ECCV’22[42] 47.71(−16.03)↓ 39.99 23.31 20.02 44.47 31.95(−15.88)↓
TIP-Adapter(f) ECCV’22[42] 45.65(−18.09)↓ 38.00 22.47 12.40 27.44 25.08(−22.75)↓
TaskRes(e) CVPR’23[40] 65.18(+1.44)↑ 55.39 36.54 25.97 61.93 44.96(−2.87)↓
ZS-LP 64.02(+0.28)↑ 53.61 34.93 24.06 60.72 43.33(−4.50)↓
CLAP 68.33(+4.59)↑ 58.38 41.27 29.91 68.61 49.54(+1.71)↑

Zero-Shot ICML’21[30]

ViT-B/16

68.71 60.76 46.18 47.76 73.98 57.17
Rand. Init LP ICML’21[30] 62.95(−5.76)↓ 52.48 29.22 29.40 50.54 40.41(−16.76)↓
CLIP-Adapter IJCV’23[11] 68.46(−0.25)↓ 59.55 39.88 38.83 64.62 50.72(−6.45)↓
TIP-Adapter ECCV’22[42] 53.81(−14.90)↓ 45.69 29.21 36.04 55.26 41.55(−15.62)↓
TIP-Adapter(f) ECCV’22[42] 51.71(−17.00)↓ 43.07 27.13 27.04 45.07 35.58(−21.59)↓
TaskRes(e) CVPR’23[40] 70.84(+2.13)↑ 62.15 43.76 43.91 71.59 55.35(−1.82)↓
ZS-LP 69.73(+1.02)↑ 60.40 41.63 41.94 70.64 53.65(−3.52)↓
CLAP 73.38(+4.67)↑ 65.00 48.35 49.53 77.26 60.04(+2.87)↑

Table 11. Exploring the proper constraint value in CLAP. Full numerical performance for the ablation experiment regarding the initial
configuration of the Lagrangian multipliers in the class-adaptive Linear Probing. Results using ResNet-50 as the backbone averaged across
3 random seeds.

Method Setting ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAAircraft SUN397 DTD EuroSAT UCF101 Average

ZS-LP

1-shot

57.91±0.25 87.98±0.13 77.96±2.57 55.24±0.46 79.62±0.47 70.60±0.35 20.30±0.81 61.00±0.19 46.59±1.51 55.57±1.71 61.34±0.73 61.28±0.83

CLAP(Constant-w=1) 59.74±0.18 88.68±0.43 84.23±0.69 58.39±0.29 75.77±0.55 74.44±0.36 20.64±0.09 61.47±0.02 49.45±1.49 59.21±1.82 64.64±0.57 63.33±0.59

CLAP(ClassWise - avgCorrected) 59.02±0.24 88.44±0.20 84.29±0.87 57.75±0.43 79.36±0.52 73.59±0.08 20.76±0.20 61.19±0.08 48.09±1.26 59.85±2.61 63.02±1.09 63.21±0.69

CLAP(Constant-w=ZS) 58.80±0.21 88.65±0.34 83.65±0.90 56.61±0.28 78.17±0.30 73.82±0.35 20.67±0.70 61.24±0.16 48.96±1.49 59.77±1.48 63.83±0.53 63.11±0.61

CLAP(ClassWise) 58.50±0.24 88.38±0.25 83.64±1.18 56.35±0.40 79.90±0.46 73.00±0.14 20.62±0.55 61.15±0.18 47.46±1.15 59.21±0.82 62.48±0.99 62.79±0.58

ZS-LP

2-shot

57.85±0.04 89.26±0.21 80.56±1.58 60.69±0.42 84.46±0.19 72.94±0.35 23.18±0.36 62.61±0.20 51.79±1.77 63.06±3.14 67.23±0.54 64.88±0.80

CLAP(Constant-w=1) 61.29±0.07 89.74±0.07 85.26±0.59 62.02±0.40 77.60±0.25 75.77±0.23 22.29±0.49 64.03±0.15 52.36±1.37 63.72±0.88 67.96±0.41 65.64±0.45

CLAP(ClassWise - avgCorrected) 60.42±0.16 89.70±0.13 85.18±0.69 61.87±0.21 83.37±0.32 75.46±0.28 22.61±0.39 63.67±0.09 53.45±0.88 64.07±0.58 68.27±0.67 66.19±0.40

CLAP(Constant-w=ZS) 59.94±0.09 89.99±0.19 85.04±0.45 61.58±0.40 81.88±0.30 75.37±0.24 23.09±0.38 63.71±0.17 53.96±1.64 65.85±1.28 68.19±0.54 66.24±0.52

CLAP(ClassWise) 58.50±0.24 89.79±0.15 84.93±0.66 61.40±0.38 84.22±0.35 74.94±0.24 23.21±0.32 63.31±0.13 53.05±1.03 65.63±1.49 67.77±0.53 66.07±0.50

ZS-LP

4-shot

57.88±0.18 90.36±0.35 82.76±1.02 63.73±0.37 88.47±0.65 74.41±0.33 25.57±0.45 64.70±0.38 57.58±0.20 72.78±3.44 69.55±0.26 67.98±0.69

CLAP(Constant-w=1) 62.51±0.11 90.51±0.29 86.51±0.23 64.84±0.41 79.81±0.35 76.36±0.10 23.30±0.48 65.83±0.28 55.79±0.88 68.37±1.37 68.60±0.49 67.49±0.45

CLAP(ClassWise - avgCorrected) 61.96±0.15 90.41±0.33 86.67±0.18 65.67±0.19 86.36±0.86 76.27±0.17 24.67±0.42 66.12±0.32 57.98±0.46 69.10±1.36 69.56±0.44 68.62±0.44

CLAP(Constant-w=ZS) 61.35±0.21 90.62±0.33 86.31±0.25 65.61±0.39 85.05±0.75 76.04±0.17 25.46±0.54 66.38±0.29 58.51±0.51 73.37±2.25 69.71±0.60 68.95±0.57

CLAP(ClassWise) 60.73±0.20 90.62±0.46 86.51±0.32 65.50±0.26 87.66±0.85 75.92±0.16 25.65±0.67 65.99±0.31 58.85±0.06 73.15±2.34 69.88±0.26 69.13±0.54

ZS-LP

8-shot

59.10±0.19 91.62±0.29 85.80±0.40 69.29±0.12 93.94±0.29 74.51±0.28 29.59±0.82 67.08±0.04 63.18±0.99 78.55±3.04 73.05±0.88 71.43±0.67

CLAP(Constant-w=1) 63.83±0.07 90.87±0.18 87.15±0.39 66.95±0.24 81.65±0.14 77.42±0.22 23.60±0.24 67.24±0.31 58.18±0.36 69.06±1.41 70.42±0.27 68.76±0.35

CLAP(ClassWise - avgCorrected) 63.69±0.12 91.01±0.05 87.50±0.44 68.95±0.08 90.26±0.13 77.49±0.29 25.70±0.55 67.93±0.17 61.21±0.35 70.02±1.44 72.01±0.26 70.52±0.35

CLAP(Constant-w=ZS) 63.41±0.11 91.21±0.07 87.49±0.41 69.99±0.16 88.20±0.19 77.46±0.26 29.20±0.56 68.66±0.24 62.79±0.79 76.51±2.80 72.79±0.68 71.61±0.57

CLAP(ClassWise) 62.98±0.13 91.45±0.05 87.75±0.40 70.35±0.30 92.06±0.43 77.42±0.31 28.97±0.89 68.61±0.20 63.24±0.65 76.66±2.78 73.34±0.49 72.08±0.60

ZS-LP

16-shot

61.00±0.11 92.98±0.09 86.27±0.33 75.49±0.09 95.82±0.29 75.86±0.04 34.82±0.86 69.72±0.04 66.43±0.30 83.16±0.13 76.54±0.42 74.37±0.25

CLAP(Constant-w=1) 64.76±0.03 91.18±0.16 87.64±0.11 68.97±0.31 82.45±0.17 78.06±0.08 24.43±0.40 68.13±0.04 59.06±0.46 71.46±0.68 71.00±0.15 69.74±0.24

CLAP(ClassWise - avgCorrected) 65.02±0.04 91.51±0.20 88.11±0.26 71.55±0.19 92.08±0.03 78.28±0.07 27.80±0.18 69.32±0.13 63.20±0.63 72.56±0.16 74.20±0.23 72.15±0.19

CLAP(Constant-w=ZS) 65.29±0.04 91.81±0.20 88.07±0.05 73.99±0.27 89.61±0.15 78.46±0.09 33.50±0.77 70.46±0.11 65.48±0.52 79.95±0.22 74.61±0.39 73.75±0.26

CLAP(ClassWise) 65.02±0.06 91.93±0.18 88.51±0.16 75.12±0.21 94.21±0.13 78.55±0.07 33.59±0.86 70.78±0.05 66.41±0.74 80.07±0.38 76.07±0.21 74.57±0.28


