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Supplementary Material

A. A closer look to the pitfalls of previous
vision-language adapters

In this work, we provide a closer view of the pitfalls of cur-
rent literature on few-shot vision-language adapters of large
vision-language models. In particular, we observe that re-
cently proposed adapters rely on a large test subset to adjust
important hyperparameters per dataset, and thus become
impractical in real-world few-shot scenarios. This limita-
tion becomes evident when fixing the hyperparameters on a
given scenario and testing the model on other tasks, SoTA
methods typically see their performance degrade compared
to aa well-initialized Linear Probing (see Supp. Fig. 2). In
the following section, we aim to depict a detailed view of
these methods and the reasons that underlay their promis-
ing reported performance.

A.1. What are SoTA adapters doing?

We observe two concurrent phenomena on current SoTA
vision-language adapters: (i) they use a good initialization,
based on the zero-shot prototypes; and (ii) they introduce a
set of empirically-fixed hyperparameters that control the di-
vergence from the initial set of initial zero-shot prototypes.
CLIP-Adapter [11]. The inference relies on the zero-
shot inference as in Eq. (1), using the same prototypes,
which remain static. During training, CLIP-Adapter trains
a residual MLP block to refine the visual features, such that
v/ = v + oy fy(v). This method explicitly keeps the class
prototypes close to the zero-shot initialization, while modi-
fies the input visual features. This modification can be con-
trolled with the residual ratio, oy, together with the used
learning rate and early stopping at specific epochs.
TIP-Adapter [42]. Training-free CLIP proposes a mul-
timodal combination of logits, using two terms: (i) a
weighted similarity to the support sample, and (ii), the sim-
ilarity of the zero-sot prototypes. This dual formulation can
be expressed in the following formula:
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where auipa and 3 are control hyperparameters, which are
empirically fixed.

There are two versions of TIP-Adapter. First, a training-
free version, in which the vision logits are obtained by the
post-processed version of the average cosine similarity be-
tween the vision embedding of the target and the support
samples per class. Second, a trainable version in which, ad-
ditionally, the vision embeddings from the support set are

tunned, which dramatically increases the number of train-
able parameters with the number of shots.

Since details matter, it is worth mentioning that in the

combined logits depicted in Supp. Eq. (14), temperature
scaling is only applied on the cosine similarity of text pro-
totypes. The 7 value is learned during training and usually
converges to large values, which are clipped at a maximum
value of 100. This scaling makes the logits obtained from
the zero-shot weights dominate in the combined formula-
tion if « is not properly fixed to large values. As we pre-
viously stated, this results in an initialization close to the
zero-shot prototypes, and the deviation from this solution is
carefully controlled with an « scaling per dataset.
Task Residual Learning [40]. TaskRes uses a linear classi-
fier to obtain class prototypes, following Eq. (3). In partic-
ular, the authors propose to train a “prior-independent task
residual”, which follows a re-parametrization of the learned
prototypes w, such that w = ¢ + aw,., where ¢ is the lan-
guage prototypes for the target classes (zero-shot weights),
and w, is a learnable matrix that modifies them. This mod-
ification is controlled by the hyperparameter «, which is
empirically fixed for each dataset. Since w,. is initialized to
a matrix filled with zeros, the re-parametrization is equiv-
alent to using a zero-shot initialization at the first iteration.
In addition, given a feature vector v of a support sample,
and optimizing w,- via gradient descent using Eq. (2), it is
straightforward to derive that this term simply introduces a
scaling factor on a given learning rate 7, and no additional
information is introduced to a simple Linear Probing:
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Other related literature. Albeit proposed in the context of
full fine-tuning of vision-language models in the large data
regime, WiSE [36] approach also introduces some insights
on efficient adaptation using a simple linear classifier. In
particular, the authors study the benefit of linear interpola-
tion between fine-tuned and zero-shot (initial) weights. In
the case of adjusting uniquely a linear classifier, this method
would be equivalent to balancing the text embeddings and
the trained prototypes, such that w = « wrp + (1 — @) t.
Concretely, the ratio « is fixed using a validation subset af-
ter training, The idea that underlays this method aligns with
the observations derived from the few-shot adapters.
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Figure 2. Pitfalls of few-shot adapters due to the absence of a model selection strategy - Additional methods. The cross-shift model
selection matrices (¢, j) depict the relative improvement w.r.t. a zero-shot initialized Linear Probing when using the optimal hyperparame-
ters for the dataset ¢, for adapting in another task 7, for each SOTA method (first four plots) and our approach (last plot). This is an extended

version of Fig. 1 in the main manuscript.

A.2. Remaining close to the initial zero-shot proto-
types

As we stated previously, we observed that recently pro-
posed few-shot adapters benefit from a good initialization,
which is obtained from robust class-wise text embeddings.
Also, in the main manuscript, we introduce a revisited Lin-
ear Probing baseline tailored for vision-language models
(ZS-LP in Sec. 4.1). This method benefits from this good
initialization, together with other training heuristics. In-
deed, we demonstrate empirically in the experimental sec-
tion that it serves as a strong baseline for VLMs adaptation.
We now study the convergence of this method during adap-
tation (curves in Supp. Fig. 3), to shed light on the benefits
of using a good set of initial prototypes. Furthermore, our
goal is to expose that in different datasets, deviating much
from initial prototypes may, or may not, be beneficial. We
stress that, as a reminder, the more iterations are performed
during adaptation, the more the model predictions deviate
from initial zero-shot representations, which can also be
controlled with the step size, a.k.a., learning rate. First,
we can observe that, the zero-shot CLIP initialized Linear
Probe (orange line) achieves a maximum in performance
over test samples at different epochs, which do not corre-

spond to the convergence on the support set. Indeed, letting
the adaptation converge typically yields performance degra-
dation in ZS-LP. Even though this solution (i.e., maximum
performance on test samples) could be reached using a large
validation subset, which can be used for tuning the hyperpa-
rameters and early stopping, its presence is unrealistic on a
strict few-shot protocol. In contrast, it is worth mentioning
that the proposed learnable class-adaptative Linear Probing
(CLAP, see Sec. 4.3) prevents this degradation, and does not
require access to any additional data. Last, we would like to
highlight an interesting observation from the convergence
points seen in these curves. In particular, and interestingly,
the range of values for searching the corresponding hyper-
parameters in methods such as TIP-Adapter, varies with the
convergence scenario for the best test performance (more
details in the next section).

To provide further empirical evidence, we now study in
Supp. Fig. 4 the performance obtained by a zero-shot ini-
tialized Linear Probing (ZS-LP) with a fixed scheduler (see
Sec. 5.1 for details), just varying the initial learning rate.
Larger learning rates might produce solutions farther from
the initial data points, and vice-versa. In particular, we fo-
cus on two popular datasets used for adaptation: OxfordPets
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Figure 3. Linear Probing learning curves. Results of Linear Probing-based methods when adapted to ImageNet using ResNet-50 as a
backbone, 16 shots per class as a support set, and a training scheduler using SGD. During training, both support set accuracy (fop) and the
performance on the test subset (bottom) are monitored, and the maximum test accuracy is highlighted in the curves. The training scheduler

is described in Sec. 5.1.

[29] and Flowers102 [28]. The experimental results show
that even for Linear Probing, adjusting the training spec-
ifications per task leads to better test generalization. For
some datasets, such as OxfordPets, it is beneficial to under-
fit on the support set (see Supp. Fig. 4 top-left), and thus
using smaller learning rates is beneficial. In other cases,
such as FLowers102 (see Supp. Fig. 4 top-right), the degra-
dation from fitting to the support set is not observed. Thus,
each adaptation task presents its specific behavior. In a few-
shot setting, however, only the support set information is
available and model selection for a given adapter should
rely only on this data. It is worth mentioning that the pro-
posed class-adaptive solution (CLAP) is able to keep robust
performance in both cases, using the same training setting
across datasets.

A.3. SoTA methods: is it all about playing with
hyperparameters?

We previously introduced the methodological basis of SOTA
adapters in Supp. Sec. A.l, and the different hyperparam-

eters they use for model selection. Also, we have intro-
duced in Supp. Sec. A.2 that each adaptation dataset might
present different characteristics, and thus the optimum so-
Iution might be closer or farther to the zero-shot CLIP ini-
tialization. For instance, the Flowers101 dataset presents a
particular behavior, which differs from other datasets (see
Supp. Fig. 4). Interestingly, for this dataset, our cross-shift
dataset experiments unveil that large performance drops are
experienced in SOTA methods when using the optimum hy-
perparameters found for other tasks (see Supp. Fig. 2). In
the following, we provide observational evidence that these
methods adjust specific hyperparameter values per dataset,
using prior knowledge from the test subset, which is unre-
alistic in practice.

CLIP-Adapter [11]. While an official implementation
of the training code is not available, authors explicitly
claim in the paper that: “We perform hyperparameter
searching over different value selections of o for each
dataset and report the best performance among all search-
ing spaces.” In addition, we only could replicate their re-
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Figure 4. The trade-off between convergence on support set
and generalization for zero-shot initialized adapters. We depict
the performance on the support and test subsets (after training) of
zero-shot initialized Linear Probing adapters. Red numbers indi-
cate the initial learning rate used, on the fixed scheduler described
in Sec. 5.1. Two methods are presented: zero-shot initialized Lin-
ear Probe (ZS-LP, top, see Sec. 4.1), and class adaptive Linear
Probe (CLAP, bottom, see Sec. 4.3).

sults when directly adjusting the learning rate (swept among
{1071,1072,1073}) and residual ratio (searching values
are o, ={0.2,0.4,0.6,0.8,1}) on a grid search at the test
subset.

TIP-Adapter [42]. The absence of any details in the orig-
inal publication regarding model selection strategies or the
use of validation subsets leaves the GitHub repository as the
only available documentation of the official implementa-
tion. In this repository, the authors claim (see Issue #13)”:
“The alpha and beta are both set to 1 as the tuning baseline.
The alpha weighs the importance of CLIP-pre-trained and
few-shot knowledge. If the few-shot domain has a large gap
to pre-trained data (general images, just like ImageNet),
alpha is better to be larger than 1.” This suggests no ex-
plicit strategy for model selection exists. In addition, the
official implementation contains a hyperparameter search
function that takes as input the test subset in the case of
ImageNet and a large validation subset for other tasks. It is
worth mentioning that the grid search boundaries per hy-
perparameter also depend on each specific task. For in-
stance, the ayipa parameter for ImageNet is searched be-
tween [1.17, 7], and for Flowers102 dataset the target range
is [10, 50], not presenting an overlapping at all. Interest-
ingly, aipa controls the relative importance of the vision
logits, and larger weight values are searched on Flowers102,

2Recommendation provided in the official project repository: ht tps :
//github.com/gaopengcuhk/Tip-Adapter/issues/13.

a dataset which, as we show in Supp. Fig. 4, benefits from
diverging from the zero-shot initialization. These details
suggest that the hyperparameters for TIP-Adapter methods
are fixed assuming prior knowledge of the test subset for
each particular task.

Task Residual Learning [42]. As previously described,
TaskRes is equivalent to a zero-shot initialized Linear Prob-
ing, and contains an o parameter that regulates the learning
rate per dataset. It is worth mentioning that the implemen-
tation details describe the use of different learning rates for
ImageNet adaptation (n = 2 - 10~%), and for other tasks
(n = 2-1073), as well as different epochs depending on the
number of shots. In addition, it is stated that “By default,
the scaling factor « is set to 0.5 for all datasets except for
Flowers102 using I”. This detail is especially relevant, as it
suggests the access to prior knowledge to test performance.
Again, a larger adaptation to the support samples is used for
the Flowers102 task, which aligns with the low transferabil-
ity of the hyperparameters set on this task to other datasets
in Fig. 2, as well as with the longer convergence on test
performance observed in this dataset (Supp. Fig. 3).

A.4. Choosing hyperparameters for a validation-
free benchmark

In this work, we seek to provide a realistic protocol for com-
paring few-shot vision-language adapters. In this setting,
we assume access to only the available support samples, and
no additional validation examples are used. Next, we de-
scribe the implementation details of the different baselines
and the motivation for the use of particular hyperparameter
values.

For CLIP-Adpater [11], we set the hyperparameter « to
0.2 for all datasets, as it is the best value found on Ima-
geNet evaluation in the original paper. The TIP-Adapter
[42] umbrella gathers two methods: training-free, and a
trainable version, i.e., TIP-Adapter(f), in which the support
samples embeddings are updated. For both methods, we
set § and « to 1, as recommended in the official repository
(see Supp. Footnote 2) . For TaskRes [40], we only used
as baseline its enhanced version, referred to as TaskRes(e)?,
which updates the projection layer of the text encoder. The
reason for not using the base version of TaskRes is moti-
vated by our findings that suggest that this method is equiv-
alent to a Linear Probe tuning with zero-shot initialization,
and a specific learning rate scaling for each dataset (see

3The training code for TaskRes(e) base is not provided in the official
implementation (https://github.com/geekyutao/TaskRes)
and might contain specific tuning that indirectly resorts to the test set. Au-
thors uniquely share the enhanced weights, and the lack of specific imple-
mentation details might produce unfair comparisons. The only information
available in the manuscript is: “... enhanced base classifier obtained by
tuning the text projection layer of CLIP on the target task before starting
our task residual tuning ... The aforementioned enhanced base classifier is
tuned for 50 epochs”.



Supp. Sec. A.1). We set « to 0.5 in TaskRes(e) since this
is the value used in the majority of the tasks in the origi-
nal publication. Finally, we included Cross-Modal adapters
[24], in particular the Linear Probing version, which does
not require special hyperparameter tuning. To avoid using
an empirical grid search for weight decay, we implicitly ap-
plied an ¢3-normalization over the weights during training,
which provided a better performance on our ablation experi-
ments (see Sec. 5.3). All methods are trained using the same
general optimizer and scheduler as our proposed methods,
which showed proper convergence on the support set, and
all baselines employ the same text prompts for each dataset.

A.S. Trainable parameters

Efficient transfer learning ought to exploit limited supervi-
sion during adaptation while being efficient in the number
of trainable parameters. We depict in Supp. Fig. 5, a visu-
alization of the trade-off between the number of trainable
parameters and test performance of relevant prior meth-
ods, and the proposed class adaptive Linear Probing (CLAP,
see Sec. 4.3). All results are obtained in the validation-
free protocol, using the implementation details described in
Sec. 5.1. While CLIP-Adapter is a specially lightweight so-
lution, the obtained performance is limited with respect to
the proposed method (CLAP), and even a well-initialized
Linear Probing (ZS-LP). On the other hand, TIP-Adapter
largely increases the number of tunable weights with the
number of shots, which questions its transferability to other
tasks, such as dense image segmentation, in which each
pixel prototype would constitute an individual parameter. In
contrast, CLAP just introduces a negligible set of additional
trainable multipliers - one per class - over a Linear Probing
solution, which considerably enhances its performance.

B. Penalty functions for ALM: axioms

In this section, we provide the requirements for a penalty
function in the Augmented Lagrangian Multiplier (ALM)
method, detailed in Sec. 4.3.

A function P : R x R4y x Ry, — R is a Penalty-
Lagrangian function such that P'(z, p,\) = 2 P(z,p, \)
exists and is continuous for all z € R, p € Ry and ) €
R, . In addition, a penalty function P should satisfy the
following four axioms [2]:

Axiom 1: P/(Z7p,)\) >0 VZER,p€R++,>\ER++
Axiom 2: P'(0,p,\) =X VpeR i, AeR
Axiom 3: If, for all j € N, A9 € [Apin, Amax]> Where
0 < Amin < Amax < 00, then:

lim p¥) = oo and lim yU) > 0 imply that

j—o0 j—o0
lim p/(y(j)vp(j)’ /\(j)) = 00
jHOO
Axiom 4: If, for all j € N, A9 € [Apin, Amax]> Where
0 < Amin < Amax < 00, then:
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Figure 5. Trade-off between number of shots, trainable pa-
rameters, and adaptation performance. The test accuracy is
presented with respect to the number of trainable parameters
for CLIP-Adapter [11], TIP-Adapter(f) [42], and the two pro-
posed solutions in this work: a revisited Linear Probing (ZS-LP,
see Sec. 4.1), and a class-adaptive Linear Probing (CLAP, see
Sec. 4.3). Results were obtained for 1 to 8 shots in the ImageNet
dataset.

lim p¥) = oo and lim yU) < 0 imply that

Jj—o0 Jj—o0

lim p/(y(j)vp(j), )\(j)) =0.

J—00
The first two axioms guarantee that the derivative of the
Penalty-Lagrangian function P w.r.t. z is positive and
equals to A when z = 0. The last two axioms guarantee
that the derivative tends to infinity when the constraint is
not satisfied, and zero otherwise.

C. Supplementary experimental details
C.1. Additional setup information

Datasets details. In our main text, we introduce the
datasets employed to evaluate the proposed methods and
establish comparisons with relevant literature on the few-
shot adaptation of CLIP-based models. In Supp. Tab. 6,
we introduce the specific details of each dataset, including
the number of categories, test partition size, and particular
tasks.

Text prompt templates. We followed the same hand-
crafted templates as relevant prior literature of efficient
transfer learning for the 11 datasets. Concretely, we fol-
lowed CoOp [46], TIP-Adapter [42] TaskRes [40], and
CrossModal hand-crafted version [24]. These prompts
are composed of an ensemble of 8 different templates for
Imagenet-like datasets, and 1 template for the others, which
are depicted in Supp. Tab. 6. It is worth mentioning that



Table 6. Summary of datasets details. Detailed description of the 11 datasets used to validate the SOTA few-shot adapters of VLMs, and
4 ImageNet shifts employed to evaluate the generalization capabilities of those. Also, handcrafted prompts used to obtain the zero-shot
predictions and prototypes are detailed. These are the same ones used in relevant prior literature on this topic [24, 40, 46].

atas asses Splits - Prompt
Dataset Classes Train / Val / Test Task Templates
ImageNet [8] X 1000 1.28M /- /50,000 Natural obqects recogn%qon [“itap of a [CLS]” , “a bad photo of a [CLS",
ImageNet-V2 [31] 1000 -/-/10,000 Natural objects recognition oy . Nl n
e R e . a origami of [CLS]”, “a photo of the large [CLS]”,
ImageNet-Sketch [35] 1000 -/-150,889 Sketch-style image classification « . X »o -
. o a [CLS] in a video game” , “art of the [CLS]”,
ImageNet-A [16] 200 -/-17,500 Natural objects recognition “a photo of the small [CLS]” , “a photo of a [CL.S]"]
ImageNet-R [17] 200 - /-130,000 Natural objects recognition p | 2P
Caltech101 [10] 100 4,128 /1,649 /2,465 Natural objects classification [“a photo of a [CLS]”]
OxfordPets [29] 37 2,944 /736 / 3,669 Pets classification (fine-grained) [“a photo of a [CLS], a type of a pet”]
StanfordCars [21] 196 6,509/ 1,635/ 8,041 Cars classification (fine-grained) [“a photo of a [CLS]”]
Flowers102 [28] 102 4,093/1,633/2,463 Flowers classification (fine-grained) [“a photo of a [CLS], a type of flower” ]
Food101 [4] 101 50,500 /20,200 / 30,300 Foods classification (fine-grained) [“a photo of a [CLS], a type of food”]
FGVCAircraft [26] 100 3,334 /3,333/3,333 Aircrafts classification (fine-grained) [“a photo of a [CLS], a type of aircraft”]
SUN397 [37] 397 15,880/3,970/ 19,850 Scenes classification [“a photo of a [CLS]”]
DTD [7] 47 2,820/1,128 /1,692 Textures classification [“[CLS] texture™]
EuroSAT [15] 10 13,500/ 5,400 / 8,100 Satellite image classification [“a centered satellite photo of [CLS]”]
UCF101 [33] 101 7,639 /1,898 /3,783 Recognition of actions [“a photo of a person doing [CLS]”]

fine-tuning methods used for the benchmark in Sec. 5.2 (LP-
FT [22], FLYP [12]) use a larger set of 80 prompt templates
for ImageNet-like datasets, although these are not usually
used in the efficient transfer learning literature.

C.2. Results: supplementary details

Efficient transfer learning. We provide detailed nu-
merical results for the few-shot adaptation experiments
using relevant baselines and the proposed methods in
Supp. Tab. 9, which extend the values reported in Tab. 1.
Furthermore, we also depict visual curves of the perfor-
mance with respect to the number of shots employed by
each method in Supp. Fig. 8.

Domain generalization. We show in the main manuscript
the domain generalization results using adapters adjusted
to ImageNet and evaluated on out-of-distribution shifts
(i.e., ImageNet variants). These results are obtained using
ResNet-50 and ViT-B/16 CLIP backbones. In the follow-
ing, we introduce detailed results per dataset, and two ad-
ditional backbones: ResNet-101 and ViT-B/32, whose re-
sults are reported in Tab. 10. We can observe that the re-
sults using these additional backbones hold the conclusions
elucidated in the main manuscript. In particular, relevant
prior methods such as CLIP-Adapter [11] and TIP-Adapter
[42] struggle to generalize properly when their hyperparam-
eter setting is held on different backbones than the one used
for development, ResNet-50. This is especially the case for
Transformer backbones, such as ViT-B/32, which suggests
again that existing adapter methods need special care for
model selection across each dataset.

Finetuning (FT) vs. efficient transfer learning (ETL),
beyond few-shots. Fine-tuning a whole vision encoder to
downstream tasks using a few-shot training subset has been

historically less favored compared to efficient transfer learn-
ing strategies, due to the tendency of FT methods to overfit
to the new data, and thus generalizing poorly. Neverthe-
less, a relevant core of recent literature for VLMs adapta-
tion [12, 22, 36] is showing promising results on this task.
As stated in the main body of the paper, this is due to (i)
using a few-shot validation dataset, with which they early-
stop the training, and (ii) employing small learning rates to
not deviate from a good initialization. Nevertheless, if com-
pared properly in the low data regime, i.e., using 4 shots for
training and 4 samples per class for validation, and allow-
ing ETL methods that do not require a validation set to use
all samples for training, then ETL still seems to yield com-
petitive performance, being a much more computationally-
efficient solution. The results previously presented in the
main body of the manuscript (see Tab. 3) support these ob-
servations.

We now extend this comparison to a scenario in which
more data is available. Concretely, a 32-shot scenario,
where FT methods use half of it for validation. It is worth
mentioning that this experimental setting on ImageNet re-
quired 32,000 images (16,000 for validation), which might
be hardly considered a few-shot learning protocol. We in-
troduce specific results using 32-shot for ImageNet and its
distributional shifts for relevant baselines and the proposed
methods in Supp. Tab. 7. It is worth mentioning that FT
methods use 16-shots for training and another 16-shots for
validation. In addition, we present in Supp. Fig. 6 a study
of the performance evolution with respect to the number
of shots of relevant FT methods with an increasing num-
ber of parameters. More concretely, we include LP-FT
[22], which completely fine-tunes the CLIP’s vision back-
bone, and FLYP [12], which trains both vision and text
encoders. We compare these results to the proposed class
adaptive Linear Probing (CLAP), which only adjusts the



classifier head, and thus brings a negligible computational
overhead compared to LP-FT and FLYP. In the 32-shot set-
ting, CLAP shows competitive performance compared to
methods that adjust the vision encoder entirely, such as FT,
LP-FT [22], and WiSE-FT [36], for both in-distribution and
out-of-distribution datasets, while adjusting only the linear
classification head. Only FLYP [12], which requires fine-
tuning both vision and text encoders, outperforms CLAP us-
ing 32,000 images, and by a small margin: 1.2% in ID, and
1.6% in OOD. Nevertheless, this comes at the cost of adjust-
ing the entire CLIP model, which entails a non-negligible
computational overhead, making this method an inefficient
approach in low-resource scenarios. Note that CLAP is two
orders of magnitude lighter than FLYP. In addition, CLAP
does not exhibit signs of performance saturation (as LP-FT,
for example) with an increase in the number of shots (see
Supp. Fig. 6).

[0 Zero-shot
. o4 O LP—FTseimp
X ap  FLYP1a96mp
; 624 * CLAPLowe et +
O | g e
< |
(&)
O 60 1
(@)
o
Z 581

m— 32-shot
56 T | ;

ID ACC (%)

Figure 6. Finetuning (FT) vs. efficient transfer learning (ETL),
performance and trainable parameters. We compare the gen-
eralization performance of relevant full fine-tuning methods, i.e.,
LP-FT [22] and FLYP [12], and the proposed efficient transfer
learning method CLAP (see Sec. 4.3), trained on ImageNet and
evaluated on OOD shifts. Relative point size is illustrated as the
log ratio of the number of tunable parameters of each method with
respect to CLAP. MP: millions of parameters.

C.3. Supplementary ablation experiments

Distilling reliable knowledge. We now study the effect of
resorting to a class-adaptive constrained formulation in the
proposed CLAP. In particular, we further assess the benefits
of using our class-dependent adaptive scaling (A\*) of the
imposed constraint, which is initialized on the performance
of the zero-shot CLIP prototypes on the support set. To do
so, we take as baseline different empirically-set multipliers
baselines. First, we explore a homogeneous weight for all
classes, such that A = 1. Furthermore, we aim to disentan-
gle two different effects that A* might have: (i) changing

Table 7. Finetuning (FT) vs. efficient transfer learning (ETL),
beyond few-shots. Benchmark for the not-so-low data regime,
i.e., 32 shots for each class. FT methods (above the dashed line)
are trained with 16 shots and early-stopped using a validation set
containing 16 shots. WiSE-FT and FLYP use weight ensembling
as proposed in [36], and therefore, find the best mixing coefficient
« using the validation set. On the other hand, ETL methods (be-
low the dashed line) are trained using all the 32 shots given. All
methods use ViT-B/16 as CLIP backbone.

Source Target

Method Imagenet -V2 -Sketch -A -R Avg.
FT 71.86 64.15 47.97 4823 7596  59.08
LP-FT [22] 74.36 66.43 49.35 4984  76.89  60.63
WiSE-FT [36] 73.06 65.70 50.03 51.04 7822 6125

CELYPI2] 7563 6817 S066_ 5209 7849 6235 _

Zero-Shot 68.71 60.76 46.18 4776 7398  57.17
LP 67.40 56.43 31.71 3192 51.04 4271
ZS-LP 71.53 56.59 40.84 41.41 67.98  51.71
CLAP 74.40 66.05 49.16 4982 7152  60.64

*Specific numbers for FT, LP-FT, WiSE-FT, and FLYP are retrieved from [12].

the overall relative importance of the constraint term with
respect to the cross-entropy term in Eq. (7); and, (ii) provid-
ing the capability of capturing class dependent prior knowl-
edge from the pre-trained model. Thus, we further include
two alternative ways of computing A in our ablation study:
(i) a constant version of the constraint formulation, in which
all multipliers are set to a constant A*Y9 = % ZC AL, Qe
the average importance of the constraint; and, (ii) an im-
portance corrected version of the constrained formulation,
AT = X" /A9, such that & ", Ag°"" = 1. The average
performance over 11 datasets for the few-shot data regime
is shown in Supp. Fig. 7, whereas the full numerical results
per dataset are presented in Supp. Tab. 11.
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Figure 7. Ablation study on different alternatives to compute
initial A in Eq. (7). The average performance over 11 datasets is
reported.



In the special case of 1-shot or 2-shot, adaptive computa-
tion of A may lead to a slight overfitting to the information
provided by the few samples, even though the performance
gap compared to other strategies is minimal. The more shots
provided, the less noisy the information will be and comput-
ing class-dependent adaptive importance will prove more
useful. Looking at the plots, except for the 1-shot setting,
using A = 1 is always suboptimal. In the 2-shot scenario,
using A*¥9- for all classes yields the best results, although
close to the performance of the proposed A*. Generally,
when the number of labeled samples per class is particu-
larly low, the proposed A* is not the best-performing option.
However, it proves superior to other alternatives when 4 or
more shots are given, and the gap widens as the number of
shots increases. It is worth noting that the non-constrained
(ZS-LP) version’s performance approaches the constrained
version in the 16-shot setting, but it underperforms in the
lower data regimes, which demonstrates the effectiveness
of our formulation across the different regimes.

Table 8. Augmented Lagrangian multiplier optimization. We
present ablation experiments that motivate the use of only one
outer iteration in Eq. (9), which prevents overfitting on the support
samples, due to the absence of a validation subset in the realistic
few-shot scenario. K denotes the number of shots.

Method K=1 K=2 K=4
JZse 6128 ¢ 6488 6798
CLAP - Full outer loop 61.97071 632516 638342l

CLAP - 1 outer loop (Ours) 62791151 66.07(1127 69.13(11.9)1

Updating the Lagrangian multipliers beyond the first
iteration. The proposed class adaptive Linear Probing
(CLAP) is based on an adaptation of the general Augmented
Lagrangian Multiplier method, which learns the multiplier
weights per class accounting for the particular difficulty of
each category. Given the strict few-shot setting used, we
propose to use the support samples to validate the satisfac-
tion of the constrained problem. We hypothesized, how-
ever, that doing this could increase the risk of overfiting and
proposed to stop after one single iteration of the outer opti-
mization iteration in Eq. (9) (i.e., the step where the penalty
multiplies A are updated). In this section, we provide the
empirical evidence for this hypothesis, which validates our
choice. In particular, we also perform the adaptation using
both inner and outer iterations during the whole adaptation
process. To do so, at each epoch, the Lagrangian multipliers
are updated following Eq. (10). Regarding the penalty mul-
tipliers p, these are initialized per class to the initial penalty
value, and for each epoch, their value is fixed after updat-
ing the penalty multipliers to the resulting penalty after the
inner iteration. Results are reported in Tab. 8, which show
that updating these parameters continuously, based on the
support set, results in overfitting and thus provides worse
generalization.



Table 9. Efficient transfer learning performance. Full numerical performance comparison on the few-shot setting, using ResNet-50 as
the backbone. All experiments are run with a fixed configuration, and training is done until full convergence on the support set. Results are
averaged across 3 random seeds. Results for CoOp and PLOT are directly extracted from [6].

Method Setting  ImageNet  Caltechl01 ~OxfordPets ~StanfordCars Flowers102 ~ Food10l =~ FGVCAAircraft ~ SUN397 DTD EuroSAT UCF101 Average
CoOp pcv22[46] 56994103 875li102  8599:02s  55.8lirer  67.98:19s 74251152 8.5945.79 60124052 43.621196 52124546 62131104 59.5612.06
PLOTiamenlO 39545016 89834053 87493057 56.00x03s 71724097 7774047 1790s000 02475043 46.55:26 54054505 0453s0m0 62394113
Zero-Shot jomp21[30] 60.35+0.00 83.8140.00 82.86+0.00 55.69-+0.00 65941000 74.85+0.00 17.1610.00 56.80+0.00 42324000 37.531000 57471000 57.71+0.00
Rand. Init LP jomr21[30] 17.6240.01  56.824165 26.6140.50 18.41.40.95 53424084 23924056 12.1440.35 26.664049 26.691120 40.69:i458 31.694039 30424796
CLIP-Adapter ycy-23[11] 54741000 86.80000 7445:157  53.071037  7T1.57:07s 66.7810.76 17.01+0.06 59104007 41801184 57921168 59491033 58431071
TIP-Adapter gcev2[42] 60.351008 84441035 83181101 56.3240.47 67455016  74.6910.15 17.69+0.26 58414004 44031030 42081308 58794006 58.8610.54
TIP-Adapter(f) ecov22[42] I-shot  60.5140.06 85504046 83.9010.92  56.7110.50 68.60+0.70  74.7610.15 18.3310.57 58731003 44.641020 Sl.lligog 60384033 60.29:0.57
TaskRes(r) cypre23[40] 57914025 87991001 77941958 55.25.40.49 79.6240.45  70.6040.35 20.30+0.81 60.9940.10 46594151 55.60+170 61321075 61.2840.84
TaskRes(e) cvpr23[40] 58214010 88.01i01s  78.014255 55.36.40.48 79.834054  70.60.40.37 20.50.0.82 61.3340.00 46.631149 55751167 61.591080 614440583
CrossModal-LP cypr-23[24] 57404011  88.064054 80.0947 .41 57.43.40.45 78514054  73.0040.18 20.7240.29 61324011 47814150 56854336 63491003 62.2440.79
ZS-LP 57914025 87981013 77961257 55244046 79621047  70.60+0.35 20.30+0.81 61.001019 46591151 55571171 61344073 61281053
CLAP 58501024 88.3810.25 83.641118 56.3510.40 79.90+0.46  73.0040.14 20.6240.55 61.1541018 474614115 5921:082 62484099 62791058
CoOp yycv22[46] 56401087 87.841110 82224015 5841043 77584146 72614133 16.5242 38 59.6010.76 45354031 59.001345 64.054099 61.78 1139
PLOT icra3[6] 60641005 90.671021 86.64i0gs  5T.52:0m  8L19:079 77701002 1894044 6171ioes S124u195 6421i190 66831043 65231072
Zero-Shot jemi21[30] 60351000 8381000 82861000  55.691000 65941000 74.8510.00 17.1610.00 56.80£0.00 42.321000 37.531000 57471000 57-71i0.00
Rand. Init LP jcmr21[30] 26914036 69291392 38.8819.99 31.6241.20 66.38+0.520  37.9941.24 16.61+0.75 38974075 36981019 51.731100 45154039 41.8641.96
CLIP-Adapter yycy-23[11] 54204031 88224067 77.03+253 58.62.40.37 80.394+0.66 69.4310.57 20.07+0.65 60.2241065 49511021 63951184 65431033 62461071
TIP-Adapter gceyi22[42] 60.18.410.15 85764064 83.2840.70 56.97 +0.06 68.78 1014 74.9410.04 18.70+0.18 60.0340.18 45.041000 50.071030 59.8810.06 60.3310.54
TIP-Adapter(f) gcev22[42] 2-shot  60.694014 87451036 84.8640.47 58.14.10.05 70.5140.05  75.6540.25 19.77 40.26 61264026 48251013 55.084099 63241033 62.264057
TaskRes(r) cvpri23[40] 57861005 89264021 80.59:157  60.691041  84.48i020 72941036 23.16+0.36 62611035 51.794020 63.061151 67261075 64.8810.84
TaskRes(e) cvpr-23[40] 58.0840.12  89.371033 80.80:r1514  61.564084 85491068  73.0640.49 23.55+0.49 63.061065 52171030 63331149 67391080 652610583
CrossModal-LP cypr-23[24] 49.131020 89554036 81.721072 61764027 82301055 74.311032 22.46+0.30 63911024 53.0941.44 62911141 68134067 64.481059
ZS-LP 57.8540.04 89264021 80.56.4; 58 60.69.+0.42 84.464:019 72941035 23.18.40.35 626141036 51.794020 63.06415 67231073 64.8840383
CLAP 585041024 89794015 84.93:066 61401038  84.22:035 74941004 232140.24 63311032 53.05:1013 65631115 67771099  66.0710.58
CoOp pcv22[46] 58481047 8952080 86.65:097 62741006 86101105 73491203 20.6342.46 63244063 53941137 68.6lizss 67791071 66471129
PLOTiamalO 01494023 90804020 88631026  34linzo 87824020 772lx043 22303042 65094043 56034043 72365220 69.60:067 6860105
Zero-Shot w1 [30] 60351000 83811000 82862000  55.69:000 65942000 74851000 17161000 56801000 42322000 37531000 ST471000 57712000
Rand. Tnit LP o1 [30] 36981057 78.1lizgo 50004005 44751025  77.21i11s  50.10i095 2108079 49631060 47971040 585lisos 54264046 51694130
CLIP-Adapter yey23[11] 55.664031 90391026 79991160 61.0410.50 85284057  72.1040.12 23.0340.08 62.851032 55891088 72491330 69.284016 66.181075
TIP-Adapter gcey2[42] 60.18.40.0s 86981040 82271191 57.70+0.7¢ 69.81:062 74.6510.24 19.60+0.46 61421041 47184050 5429:366 62.264026 61491075
TIP-Adapter(f) gcov22[42] 4-shot 61451005 88.841078 855141057 61.09-40.50 74391008 75.2510.20 21.87+0.69 64.2310.16 53454027 66.771338 65.704020 65321063
TaskRes(r) cypr23[40] 57.881018 90371081 82761100 63731045  884diggs T4dlioss  25.59:043 6470408 57.581020 T2.77in42 69.584025 67.98%060
TaskRes(e) cyprea3[40] 58024006 9049:041 83241105 64691053  89.38i0s1 74461015 25891047 64831010 579841022 72951445 69.884043 68.3510.11
CrossModal-LP cypr-23[24] 42.15:021 90404025 84.561094  65.1840.14 85.00+0.50  75.66+0.36 24.4410.41 66.0940.42 58411020 71.724242 69741055  66.6710.59
ZS-LP 57.8841018 90361035 82.7611.02 63.7310.37 8847065 74411033 25.57+0.45 64.704038 57.5810.20 72781344 69.551026 67.9810.69
CLAP 60731020 90624045 86512030 65501026  87.66:085 75924016  2565:067 65994031 58.851005 73.15i041 69.884026 69.132051
CoOp yev22[46] 60.391057 90281042  85.36x1.00  67.641006 91271083  T1.5840.79 26.6310.86 65771002 59691013 77081242 72711050 69.8510.69
PLOT icras[6] 6192000 91541055 87.39:074 67.03:050 92432005 T7531i0s0 260700 67484001 61702035 78155000 T445:050 71231051
Zero-Shot jcmr21[30] 60.3510.00 83.8110.00 82.8610.00 55.69+0.00 65941000 74.8510.00 17.16+£0.00 56.8040.00 42321000 37.5310.00 57471000 57.7110.00
Rand. Init LP cmp21[30] 45.0640.42 84.00+238 61.651137  58.0610.23 8747+055 59.6510.14 27.99+0.49 57181038 55241113 67341476 65581053 60.841113
CLIP-Adapter ycy-23[11] 56.9541024 91331024 83391051 66.8310.80 91.93410.40 72.1140.19 27.89+0.65 65.0940.21 61374195 78494167 73231146 69.8710.69
TIP-Adapter gceyi22[42] 594441014 88264033 82274191 57.63.+0.51 73764031  73.8740.34 19.36.40.41 63.1340.25 51524097 62304719 63.154700  63.1540.54
TIP-Adapter(f) gcev22[42] 8-shot  61.8040.05 90.531028 85.6010.35 64.42.10.06 84331023 74951066 23.79+0.48 66.97 1000 59814046 70341431 69.334104 68351073
TaskRes(r) cvpr-23[40] 59.1040.19  91.621020 85.7710.39 69.2910.10 93941031  74.5210.20 29.58.40.81 67.0740.04 63181090 78.551305 73.064085 71431066
TaskRes(e) cvpr-23[40] 59124015 91944024 85744035  69.6510.47 94291037  74.3610.26 30.91+0.60 66.311025 63481051 78.831089 73.641035 71.6610.59
CrossModal-LP cypr-23[24] 46.8140.11  91.7610.06 86.7410.45 69.34.10.52 92.8710.24  76.1210.22 28.27+0.79 68204009 62614082 77734072 73554053 70.3640.61
ZS-Lp 59104019 91624029 85801040 6929102  93.94:020 T4Sligos 29.59+0.82 67.0810.04 63.1810.99 78.55:3.04 73.05:10.88 71431067
CLAP 62981013 91451005 87.7510.40 70.3510.30 92.06+0.43 77424031 28.97+0.89 68.611020 63241065 76.661278 73.344049 72.0810.60
CoOp picv22[46] 91991031 87021080  73.6010.19  9449:040 T44810.5 68361066 62.511025 83.691047 76901050 73.3310.42

PLOT icLr-23[6]

87.2140.40

94.7610.34

82.23.0.01

73.9410.54

Zero-Shot jcmi21[30] 60.3510.00 82.86.0.00 65941000 74.8510.00 37.53+0.00 AT+0.00  57.7110.00
Rand. Tnit LP o1 [30] 52241010 71632005 92735058 66924047 73384138 70941040 67545081
CLIP-Adapter yevo3[11] 59.0240.15 84924074 94.5610.30 73.9610.18 . A 832441056 77.304037 73351038
TIP-Adapter gccv22[42] 57.8140.18 81.0911.80 78.414+053 72.9610.42 21.9640.56 64.0040.26 54791066 67.901030 64.524097 64.61107s
TIP-Adapter(D reey2[42]  16-shot  62.2740.13 85431050 01181007 74651031 29321061 68901005 64561032 76.55:141 7TL8lioqo  71.40+0.as
TaskRes(r) cypr23[40] 61.01501 86.2810.45 05821009 75861001  3482:0m0 69721005 66451043 83.05:014 7T6.544042 7438105
TaskRes(e) cver'23[40] 60.85.40.12 86.28.10.21 96.141037  754310.07 36.5310.31 68434011 65881025 83.704038 76.9610.07 74424019
CrossModal-LP cypr-23[24] 52.9040.10 87.48.10.14 95201025 77141016 33.3040.26 70.5640.12 66921056 82.0310.99 76404028 73.6510.29
ZS-LP 61005011 92981000 86271033 7549:i000  9582:020 75861001 3482085 69721001 66431050 83.061015 76.545042 7437025
CLAP 65020005 91931015 885ls016 75124021  942li0us 78551007 3359086 70784005 6641s07a 80.07s080 76294021 74571008
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Figure 8. Efficient transfer learning Results. Performance comparison of relevant literature, and the proposed methods for few-shot
efficient transfer learning from ResNet-50 CLIP to 11 downstream datasets, using from 1 to 16 shots per class. Average results are depicted
in te top-left corner. Full numerical results are introduced in Supp. Tab. 9.



Table 10. Domain generalization results. Adapters are adjusted on ImageNet using 16 shots per class, and evaluated at out-of-distribution
generalization on 4 ImageNet shifts with multiple CLIP visual backbones. Bold indicates best performance. Relative improvements are
obtained for each adapter with respect to no adaptation, i.e., zero-shot prediction.

: Source Target

Method Visual Backbone Imagenet ~7 ~Skeich A E R Avg.
Zero-Shot icmr21[30] 60.35 51.49 33.33 21.67 5593 40.61
Rand. Init LP yemr-21[30] 52.24(_g 11yl 4185 15.93 1072 2995  24.61(_16.00)+
CLIP-Adapter ycv23[11] 59.02(_1.33))  48.15 14.63 1575 46.29 31.21(_g.40)+
TIP-Adapter gccv22[42] ResNet-50 57.81(_2.54)4 50.32 33.59 21.88  56.98 40.69(10.08)T
TIP-Adapter(f) ccv22[42] 62.27(41.92)T 53.99 33.75 2048  57.22 41.36(40.75)T
TaskRes(e) cvpr'23[40] 60.85(40.50)T 56.47 32.80 19.90  55.93 4128 10.67)T
ZS-LP 61.00(40.65)T 51.09 27.90 16.95  50.37 36.58(_4.03)
CLAP 65.02( 4.67)T 56.09 34.55 2152 5948 42911 2.30)T
Zero-Shot icmr21[30] 62.66 54.86 38.69 2801  64.44 46.50
Rand. Init LP yemr-21[30] 57.51(_5.15)4  44.96 22.61 16.00 4020  30.94(_15.56))
CLIP-Adapter ycv23[11] 61.87(_o.709)4 52.87 32.49 2174 5491 40.50(_6.00)+
TIP-Adapter gccv22[42] ResNet-101 60.83(_1.83)4 53.24 38.64 28.88  65.07 46.46(10.04)4
TIP-Adapter(f) ccv22[42] 65.13(42.47)T 56.48 38.64 2648  64.57 46.54(10.00)T
TaskRes(e) cvpr'23[40] 66.10(43.44)T 56.56 36.76 2475 61.52  44.90(_1 60y
ZS-LP 63.79(41.13)T 53.74 33.64 2289  58.07 42.09(_4.41)4
CLAP 67.93(15.27)T 58.98 40.68 2835  67.10 48.78( 1 2.28)T
Zero-Shot icmr21[30] 63.74 54.81 40.84 29.64  66.03 47.83
Rand. Init LP yemr-21[30] 56.87(_¢.g7)L  46.50 23.44 16.64  41.13  31.93(_15.90))
CLIP-Adapter ycv23[11] 62.70(_1.04)4 52.93 34.27 2358  57.58 42.09(_5.74)4
TIP-Adapter gccv22[42] ViT-B/32 47171 (_16.03)4  39.99 23.31 20.02 4447  31.95(_15.88))
TIP-Adapter(f) ccv22[42] 45.65(_18.00)4  38.00 22.47 1240 2744 25.08(_22.75))
TaskRes(e) cvpr'23[40] 65.18(41.44)T 55.39 36.54 2597  61.93 44.96(_5 87y
ZS-LP 64.02(40.28)T 53.61 34.93 24.06  60.72  43.33(_450))
CLAP 68.33 (1 4.50)T 58.38 41.27 2991  68.61 49541 7)1
Zero-Shot icmr21[30] 68.71 60.76 46.18 4776  73.98 57.17
Rand. Init LP jcmr21[30] 62.95_5.76)4 52.48 29.22 2940 5054 4041 (_16.76)4
CLIP-Adapter ycv23[11] 68.46(_0.25)4 59.55 39.88 3883 6462 50.72(_g.45))
TIP-Adapter gccv22[42] ViT-B/16 53.81(_14.090)4  45.69 29.21 36.04 5526  41.55(_15.62)
TIP-Adapter(f) ccv22[42] SL.71(_17.0004  43.07 27.13 27.04 4507  3558(_21.50)
TaskRes(e) cvpr'23[40] 70.84(42.13)T 62.15 43.76 4391 71.59 5535(_1.82)4
ZS-LP 69.73(4+1.02)T 60.40 41.63 4194  70.64 53.65(_3.52)
CLAP 73.38(14.67) T 65.00 48.35 49.53  77.26 60.04( 5 g7)T

Table 11. Exploring the proper constraint value in CLAP. Full numerical performance for the ablation experiment regarding the initial
configuration of the Lagrangian multipliers in the class-adaptive Linear Probing. Results using ResNet-50 as the backbone averaged across
3 random seeds.

Method Setting  ImageNet  Caltech101 OxfordPets StanfordCars Flowers102 ~ Food10l =~ FGVCAAircraft ~ SUN397 DTD EuroSAT UCF101 Average

ZS-LP 57914025 87984013 77.964257 55.2410.46 79.6210.47  70.6040.35 20.30+0.81 61.0040.19 46.59+151 55571171 61341073 61284083
CLAP(Constant-w=1) 59744018  88.68+043 84234060  58.391029  75.771055 74441036 20.64+0.09 61471002 49451149 59214182 64.641057 63331059
CLAP(ClassWise - avgCorrected)  1-shot  59.02:024 88441000 84291057 57751043 79361052 73591005 20761020 61.194005 48.09:106 59851061 63.024100 63211060
CLAP(Constant-w=ZS) 58.8040.21 88.65:1034 83.65+0.90 56.61.+0.28 78174030  73.8240.35 20.67+0.70 61.241016 489641149 59771148 63.831053 63.11:061
CLAP(ClassWise) 58501024 88.38:005 83.6d4111s 56351040 79901046 73.00101s 20621055 61.150015 474651115 592105 62484000 62794058
ZS-LP 57.8510.04 89.264021 80.564 58 60.69.+0.42 84.46.10.19 72941035 23.18+0.36 62.611020 51794177 63.061314 67.231051 64.8810.50
CLAP(Constant-w=1) 61.2940.07 89.7410.07 85264050 62.02.+0.40 77.6040.25  75.77+0.23 22.2940.49 64.0340.15 52364137 63721083 67.964041 65.6410.45
CLAP(ClassWise - avgCorrected)  2-shot 60421015 89.701013 85.181060  61.871021 83371032 75461025  22.61.030 63.6710.00 5345:08s 64071055 68271067 66194040
CLAP(Constant-w=ZS) 59941000 89.99+0.10 85.0410.45 61.58.40.40 81.8840.30 75374024 23.09+0.38 63.71+0.17 53964164 65851198 68.194051 66244052
CLAP(ClassWise) 58501024 89.79:015 84931066 61401035 84224035 7494105 2321igs 63311015 53051103 65631140 67771053 66074050
ZS-LP 57881015 90.361035 82761100 63731037 88471065 T44ligss  25.57io4s 64701035 57.58:000 72781344 69.551026 67.98.0.60
CLAP(Constant-w=1) 62.5140.11  90.514020 86.5140.03 64.84.10.41 79814035 76.3640.10 23.30+0.48 65.8340.28 55.79:+0.88 68371137 68.604049 67494045
CLAP(ClassWise - avgCorrected)  4-shot 61961015 90411033 86.671018 65671010 86361086 76271017 24.671040 66.1210355 57981045 69.101135 69.5610.45 68.62.40.44
CLAP(Constant-w=ZS) 61354021 90.624033 86.3140.25 65.61.10.30 85.0540.75  76.0410.17 25461054 66.381020 5851i051 73371225 69.71i1060 68.95:0.57
CLAP(ClassWise) 60731020 90.62:045 86.511032 65501026  87.6610s5 75921016 25651067 65.99i031 58851006 73.15:23s 69.881056 69.131054
ZS-LP 59101010 91621020 85.801040 69291012 93941020 7T451igas 295908 67.08.10.01 63181000 78551300 73.05108s 71431067
CLAP(Constant-w=1) 63.8310.07 90.87+10.18 87.1540.30 66.95.10.24 81.654+0.14 77421022 23.60+0.24 67.241031 581841036 69.061141 70424027 68.7640.35
CLAP(ClassWise - avgCorrected) ~ 8-shot  63.6940.12 91.014005 87.5040.44 68.95.10.08 90.2610.13 77.4910.29 25.70+0.55 67931017 61214035 70.021144 72014026 70524035
CLAP(Constant-w=ZS) 63411011 91214007 87491041 69.99.10.16 88.2040.10 77.4610.26 29.20+0.56 68.66+0214 62.79:070 76511280 72.79+068 71.61:0.57
CLAP(ClassWise) 62985015 91455005 87.75:040 70351050 92061045 77421031  2897i0se  68.61p0s0 63241065 76.661s7s 73341040  72.0810.60
ZS-LP 61.005011 92984000 86271035 75491000 95824020 75861001  3482i0s6 69721004 6643:030 83.161013 76.541040 7437105
CLAP(Constant-w=1) 64.7610.03 91.184016 87.6410.11 68.97 10.31 82451017  78.0640.08 24.43 1040 68.1340.04 59.06:046 71461068 71.0040.15 69.7410.04
CLAP(ClassWise - avgCorrected)  16-shot  65.025000 91514020 88111026 71555000 92080003 78281007 27801015 69324013 63201063 72561016 742040025 72.1510.10
CLAP(Constant-w=ZS) 65294004 91.8li020 88.0710.05 73.99.10.27 89.6110.15 78.4610.00 33.50+0.77 70461011 65481052 79951022 T4.611030 73.751i0.26

CLAP(ClassWise) 65021006 91931018 88.5li016 75124021 942lh013 78551007 3359:0sc 70781005 664lig7s 80.07i035 76071021 74571008




