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Abstract

In this supplementary material, we present information
about our pretraining procedures and results from addi-
tional experiments. We also showcase examples of both our
pretraining data and synthetic data. This document is laid
out as shown below.
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A. Pretraining Details

Figure A.1. Distribution of shot lengths observed in our dataset.

Data Preprocessing We temporally segment long-form
content into shots (camera changes). Fig. A.1 shows the
distribution of shot lengths. We ignore shots that are shorter
than 3 and longer than 12 seconds. The former constraint

is to make sure the snippet is long enough for our models,
while the latter is to improve training throughput. The total
number of shots in each pretraining setting is shown in Ta-
ble 1 of the main submission under the column #data. When
creating a minibatch during pretraining, we ensure that 1

8 of
each batch comes from the same long-form content source
(e.g. the same movie) to create hard negatives. The process
of generating quadruple training instances (vp, ap, vs, as) is
as follows:
1. Randomly pick a shot.
2. Temporal jitter: randomly select two temporal windows

of max(T, 3) seconds where T is the length of the shot.
These two snippets, derived from the same shot, are our
primary and secondary instances. For the secondary in-
stance, the language of the audio is different from the
one in the primary instance, if an alternate audio track
(i.e. dub) is available.

3. For each pair of audio and video:
Video: Resample to 25 fps, uniformly sample 16
frames, randomly scale the shorter side of video within
the range of 256-320, then perform a random crop of
224x224.
Audio: Resample to 48kHz, convert audio to
mel-spectrogram (n fft=1024, hop length=501,
num mels=96), convert to the decibel scale, and
apply time and frequency masking with maximum value
of 50 percent of the corresponding axis.

Model and Pretraining Hyperparameters The MLP
projection heads have an output dimensionality of 512. The
latent embeddings (z) are L2 normalized prior to computing
the loss. The temperature factor τ in the objective function
is set to 0.07. We use the AdamW optimizer [10] with a
learning rate of 3e-4, and weigh decay of 5e-2. We train for
12 epochs on 32 NVIDIA A100 GPUs, with a batch size
of 64 per GPU, using a half-cosine learning rate annealing
which kicks off after 2 warm-up epochs.

B. Additional Experiments
B.1. Video-Only Results

We report results on UCF101 [15] and HMDB51 [9], well-
known benchmarks, to assess the video-only performance
of our models, shown in Table B.1. Performance between
our model variants is comparable, showing that the dub-
augmented training does not necessarily decrease video-
only performance. Additionally, we compare to recent



Model UCF101 [15] HMDB51 [9]

B.3 88.90 69.35
B.4 88.20 68.91
B.5 87.99 69.43

FIMA [26] 76.40 47.30
FAME [4] 72.20 42.20

Table B.1. Performance of video models on UCF101 [15] and
HMDB51 [9] datasets, comparing with recent results that do not
involve fine-tuning.

Model VGGSound

B.3 43.49
B.4 41.95
B.5 42.96

LAION-CLAP [23] 46.20
BLAT [25] 42.90

Table B.2. Performance of audio models on the VGGSound [2]
dataset, comparing with recent results that do not involve fine-
tuning on the downstream dataset. The LAION-CLAP result re-
ported uses keyword-to-caption augmentation.

state-of-the-art results which, like us, do not use fine-tuning.
Note that these results use linear probes, vs. our MLP
probes which were derived from a grid search over probing
strategies. Nevertheless, the fact that we significantly beat
these results without fine-tuning (>12% absolute) demon-
strates the value of our learned representations.

B.2. VGGSound Results

We report results on VGGSound [2], an audiovisual bench-
mark on which we focus on audio results, shown in Ta-
ble B.2. Once again, performance between our model vari-
ants is comparable, and our results are competitive with re-
cent state-of-the-art results which don’t use fine-tuning.

B.3. Controlled Dataset and Models

In this section, we discuss the methods and results from a
smaller-scale, more controlled set of experiments. The pre-
training dataset consists of 748 movies, about 1300 video-
hours of content. Each movie contains a video track, as well
as four audio tracks: English (EN) as the primary language,
and three dubbed versions, Spanish (ES), French (FR), and
Japanese (JA), all languages for which we find dubs are rel-
atively commonly available. Having multiple dub options
allows us to investigate trade-offs between secondary lan-
guages, and whether “multilingual” models might further
strengthen performance.

The video model is a medium X3D [5], which is an ef-
ficient ResNet-based model. Our audio model is an Acous-

tic ResNet50 [24], which takes audio spectrograms as in-
put. Both models output 1024-dimensional representa-
tions per clip. We share backbone weights (i.e. Acous-
tic ResNet50) across audio variants with primary and sec-
ondary (dubbed) languages. We do not share weights for
primary vs. secondary audio, to allow for more flexibil-
ity. As in our primary experiments, we mainly train these
models cross-modally, i.e. we compute the contrastive cost
between modalities.

We train these models on 4 A100 GPUs for 10 epochs
with a batch size of 26 per GPU. We use a negative sam-
pling parameter k (samples drawn from the same movie as
the positive clip), which we set to 12 per GPU. We use the
AdamW optimizer [10] with β=(0.9, 0.999), a learning rate
of 0.001, weight decay of 0.05, and a cosine learning rate
schedule with a half-epoch warmup.

In all, we compare the following model variants in these
smaller-scale, more controlled, experiments:

1. Monolingual (EN): In this baseline, we consider mod-
els trained with two differently-augmented primary
(English) audio treated as “primary” and “secondary”
(ap=EN; as=EN) audio respectively. This is to ac-
count for any possible effect of two augmentations per
seen sample, as occurs for the dub-augmented cases, al-
though it does not modify the data distribution. This is
a SimCLR-based setup, with two audio paths each con-
trasted with video.

2. Bilingual (ES, FR, JA): We introduce one secondary
audio at a time to explore the dub-augmented training
hypothesis (ap=EN; as= ES OR FR OR JA).

3. Multilingual (+EFJ): Here, we effectively randomly
select a secondary audio from the given list (Spanish,
French, and Japanese) per batch (ap=EN; as ∈R {ES,
FR, JA}). The order of samples is randomized, so in
practice we simply circle through the list round-robin.
We aim to explore whether there are additional benefits
or drawbacks to having more than one secondary audio.

4. No-Speech (SEP): We establish another baseline where
the speech is separated and we only train on video + non-
speech audio. This allows us to examine whether simply
removing the speech is enough for a performance gain
on non-speech-focused tasks. We use the pretrained Hy-
brid Demucs v3 model [3] to separate the vocal from the
rest, mixing the other stems back together. There is no
secondary audio here (ap=EN SEP). Note that this vari-
ant is trained with 44.1kHz audio, as this is the input and
output sample rate for the Demucs models. Although
Demucs is trained for music separation, we find that it
works well on speech in practice on our dataset. We use
the default (mdx extra q) pretrained model.

5. Audio-Only (Monolingual: AUD, and Multilingual:
AUD+EFJ): Finally, we examine two audio-only models.
The data is similar to the monolingual and multilin-



gual setups, except without video. The objective func-
tion is now within-modal, between the two audio clips.
The monolingual version represents standard audio con-
trastive training with two augmented copies. These
models cannot work on visual or audiovisual tasks, but
here we seek to evaluate whether and how much dub-
augmented training contributes improvements in the ab-
sence of video.

B.3.1 Evaluation

Evaluation Tasks Beyond the HEAR [17] tasks used in
our main experiments, we include results from additional
audio tasks to this controlled setup to gain a more com-
plete picture in the controlled setup. First, we add au-
dio tasks from HARES [20]; specifically, TUT18 [13] for
acoustic scene recognition, Fluent Speech Commands [11]
for speech command recognition, and VoxForge [12] for
language identification, complementing existing HEAR
tasks. As in the supplementary material for our main re-
sults, we include the video-only action recognition tasks
HMDB51 [9] and UCF101 [15]. Finally, we add an audiovi-
sual task (VGGSound [2]) to facilitate a better comparison
with SEP, since this baseline sees no speech altogether. We
hypothesize that SEP will be a strong performer in some
cases, but that dub-augmented models will be stronger in
general as they preserve the audiovisual relationship be-
tween speech actions visually occurring and sounding.

For the visual and audiovisual tasks, we train the probes
for 200 epochs using Stochastic Gradient Descent and a
learning rate of 0.2 following a cosine schedule. We train
on 2 A10 GPUs with a total batch size of 1024. For HEAR
tasks, we use the provided API’s strategy and the 48kHz
data. For HARES tasks, we follow the authors’ specifica-
tions [20]: in general, with 400K training steps and a learn-
ing rate schedule consisting of 5K linear warmup steps and
a cosine decay for the rest (max. learning rate of 0.0002,
with the Adam [8] optimizer). We train on 2 GPUs with
a total batch size of 64. In all relevant cases, we duplicate
mono audio to the second channel to form a pseudo-stereo
input to match our model’s architecture.

B.3.2 Results

In total, we trained 8 different model variants and evaluated
them on 15 different tasks. Table B.3 shows our main tasks
on which we hypothesized improvement (N=8), grouped by
modality and task type.

Does dub-augmented pretraining help? For all tasks in
Table B.3, one or more dub-augmented models outperform
the monolingual EN model. In 6/8 tasks, all dub-augmented
variants outperform EN, except for the two easiest tasks

(TUT18 and GTZAN). We hypothesized this outcome for
the sound and scene classification tasks, where we consis-
tently observe substantial gains, as well as the non-semantic
speech tasks. This supports the results from the main paper.

Is the improvement due only to de-emphasizing speech?
We examine the source-separated version to address this
question, since it offers the extreme case where the
speech is removed altogether (as much as possible). The
source-separated variant presents a strong baseline on the
sound/scene classification tasks, despite mostly being out-
performed by one or more dub-augmented models. We
expect this is due to re-focusing on non-speech elements.
However, despite strong performance in these cases, this
variant has drawbacks. First, it results in lower performance
than all other models on VGGSound (audiovisual classifica-
tion) and both visual tasks (shown in the trade-off results in
Table B.4). We suspect this is because there is a clear dis-
crepancy between the auditory and visual channels in the
source-separated version, i.e. speech. When a person is
speaking, and there is little or no speech content in the au-
ditory stream accompanying the visual, this may act as a
confounder for coordinating the two representations. Note
that People is a large category in VGGSound1.

Second, SEP significantly underperforms on non-
semantic speech tasks and (in Table B.4) language identi-
fication, with the exception of GTZAN which we find is an
easier task in general. This intuitively makes sense: this
variant does not see speech, effectively, and performs lower
than the monolingual variant as well. These results illustrate
a trade-off: source-separation as a preprocessing method, in
addition to being very computationally expensive and weak-
ening the self-supervision assumption (by dependence on a
third-party supervised model), results in poor performance
on paralinguistic tasks, which require attention to aspects of
speech beyond language.

Are more languages better? Given the strength of dub-
augmented training, we ask whether introducing more lan-
guages into the mix improves performance further. Our
results don’t indicate this to be the case, but note that in
Table B.3, the EFJ model is least commonly the lowest-
performing dub-augmented variant (1/8 tasks). Addition-
ally, the multilingual variant performs well on 2/3 non-
semantic speech tasks. Even though paralinguistic features
can vary by language, commonalities exist that may be use-
ful and many practical scenarios could benefit from diverse
examples. The robustness of the multilingual model sug-
gests that it could be a reasonable default choice assuming
little knowledge about the downstream tasks, and we use

1www.robots.ox.ac.uk/ vgg/data/vggsound

https://www.robots.ox.ac.uk/~vgg/data/vggsound/


Baselines (SimCLR) Dub-Augmented

Task M AV SEP A ES FR JA EFJ A+EFJ

Sn
d/

Sc
n

ESC-50 [14] A .527±.012 .570±.028 .220±.027 .580±.019 .575±.031 .590±.036 .587±.009 .550±.026

FSD50K [6] A .296 .307 .109 .317 .313 .311 .313 .277
TUT18 [13] A .853 .857 .682 .884 .881 .849 .867 .801
VocalImitation [7] A .042 .051 .022 .045 .047 .045 .050±.006 .055
VGGSound [2] AV .303 .287 — .323 .314 .314 .311 —

N
on

Se
m CREMA-D [1] A .514±.012 .489±.009 .354±.022 .528±.009 .540 .520±.010 .548±.012 .530±.011

GTZAN Mus/Sp [18] A .954±.054 .931±.099 .866±.119 .946±.082 .891±.142 .931±.092 .969±.054 .954±.054

LibriCount [16] A .654±.026 .608±.016 .505±.014 .671±.025 .706±.021 .681±.016 .676±.013 .678±.022

Table B.3. Controlled experiments evaluation results. All metrics are top-1 accuracy, except FSD50K and VocalImitation (Mean
Average Precision). Results in bold indicate the highest score, and in gray indicate the lowest. The task types are Snd/Scn = Sound/Scene
Classification and NonSem = Non-Semantic Speech.

a similar multilingual approach in our larger scale experi-
ments in the main paper.

Is dub-augmentation beneficial even without video?
The A+EFJ variant always outperforms the AUD model (in-
cluding on all audio tasks we examine later for trade-offs,
shown in Table B.4). AUD is the weakest performer on all
relevant tasks, indicating the benefits of cross-modal train-
ing. Additionally, on some tasks, the multilingual variant
comes close to or even outperforms (as in on VocalImita-
tion) the cross-modal variants. Of course, this variant can-
not work on visual or multimodal tasks, and still largely
underperforms the multimodal dub-augmented models, but
it demonstrates the significant value of even unimodal dub-
augmented training.

B.3.3 Exploring Trade-Offs

Results on the 7 tasks in Table B.4 help us evaluate possi-
ble trade-offs in the smaller-scale and controlled setup, to
complement the previous results.

Can dub-augmented models still recognize language?
The dub-augmented variants generally perform similarly or
slightly worse on VoxLingua but appear to do better on Vox-
Forge, both language identification tasks. The latter is a
large-scale user-submitted dataset, which may have differ-
ent auditory characteristics from the former as a result. Tak-
ing these results together, we expect that the dub-augmented
models are able to retain information useful for language
identification in their pre-MLP features. It is possible that
more general auditory features, which do not encode speech
semantics, are still discriminative in these tasks.

Are they discriminative between spoken words? As in
our results from the main paper, we do not observe ma-
jor degradations on linguistic tasks. This suggests that

the features learned by our dub-augmented models pre-
serve speech-related information that can be used to, for
instance, recognize words or commands. However, the
source-separated models’ features appear useful for these
tasks, which suggests that non-speech features and more
general representations of the sound signals may be helpful.
We further investigate this below, where our results show
that the background noise in one of these datasets (Fluent
Speech Commands) may provide useful signal for perfor-
mance.

Is performance on video-only tasks impacted? On the
visual action recognition tasks, the results from the dub-
augmented variants appear similar to the baseline. The
baseline performs slightly better on HMDB51 and slightly
worse on UCF101. This suggests that the overall video-only
performance of the model may not be significantly affected
by dub-augmented pretraining, similar to what is shown in
Table B.1 for our main model variants.

C. Examples of Synthetic Counterfactual Pairs
Fig. C.2 highlights clips from a synthetically generated ver-
sion of the LVU dataset [22], which we refer to as LVU-M,
as noted in the main paper. Similar to Fig. ??, the spectro-
grams show variation and commonalities between alternate
audio tracks of the same clip. The examples, arbitrarily se-
lected, show both consistency with the visual (e.g. voices,
general timing, etc.) and divergence from it due to artifacts,
lack of full acoustic context (e.g. reverberation), and other
current limitations of the proposed pipeline. We only show
the middle 10 seconds of these clips, to allow easy inspec-
tion.

D. Code for Modular Pipeline
Finally, we include the codebase for our modular pipeline
for simulating counterfactual pairs. The README.md file
lists the main dependencies and components, and provides



Baselines (SimCLR) Dub-Augmented

Task M AV SEP A ES FR JA EFJ A+EFJ

Se
m

Sp FlSpComm [11] A .379 .400 .263 .391 .410 .402 .373 .368
SpComm5h [21] A .298 .372 .144 .362 .344 .325 .300 .231
SpCommFull [21] A .471 .489 .162 .477 .537 .530 .491 .298

L
an

g VoxForge [12] A .546 .516 .504 .580 .584 .592 .571 .543
VoxLingua10 [19] A .251±.045 .226±.033 .111±.012 .229±.016 .237±.050 .246±.032 .227±.043 .201±.009

A
ct HMDB51 [9] V .341 .319 – .330 .324 .322 .333 –

UCF101 [15] V .531 .496 – .540 .523 .538 .542 –

Table B.4. Controlled experiments potential trade-offs: Does dub-augmentation negatively impact performance on linguistic or
vision-only tasks? The tasks in this table include Semantic Speech (FlSpComm [11], SpComm5h [21], and SpCommFull [21]) and
Language ID (VoxForge [12] and VoxLingua10 [19]), and 2 Action Recognition video-only tasks (HMDB51 [9] and UCF101 [15]). The
results vary and often reflect relatively small differences in either direction, suggesting overall that performance is not majorly affected on
language-focused and vision-only tasks.

Figure C.2. Examples of clips from LVU-M.

instructions for configuring and running the pipeline on
video datasets.
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