
“Previously on ...” From Recaps to Story Summarization

SUPPLEMENTARY MATERIAL

Aditya Kumar Singh Dhruv Srivastava Makarand Tapaswi
CVIT, IIIT Hyderabad, India

https://katha-ai.github.io/projects/recap-story-summ/

We provide additional information and experimental re-
sults to complement the main paper submission. In this
work, we propose a dataset PlotSnap consisting of two
crime thriller TV shows with rich recaps and a new hi-
erarchical model TaleSumm that selects important local
story groups to form a representative story summary. We
present details of PlotSnap in Appendix A. Appendix B ex-
tends on additional experimentation on PlotSnap as well as
SumMe [8] and TVSum [29] followed by an extensive qual-
itative study. Finally, we conclude this supplement with a
discussion of future research directions in Appendix C.

A. Dataset Details
We start with the essential step of creating soft labels for
each shot and dialog of the episode, presented in Ap-
pendix A.1. We describe how recaps are used to gener-
ate binary labels using our novel shot-matching algorithm.
Next, Appendix A.2 describes how label smoothing is per-
formed. This is an essential step towards capturing the local
sub-story in a better way. Further, Appendix A.3 comments
on the different data split creation strategies used to evalu-
ate baselines and our model’s generalizability. Finally, to
conclude Appendix A.4 presents detailed episode-level la-
bel reliability scores.

A.1. Shot Matching

We propose a novel shot-matching algorithm whose work-
ing principle involves frame-level similarities to obtain
matches.

First, we compute frame-level embeddings using
DenseNet169 [13], which were found to work better than
models such as ResNet pre-trained on ImageNet [10, 24]
based on a qualitative analysis. An example is shown in
Fig. 1 where we see higher similarity between retrieved
episode frames and the query frame from the recap.

Second, we discuss how these embeddings are used to
obtain matches is detailed below.

Matching. For a given recap shot s in Rn+1 we compare
it against multiple frames in the episode En, and compute a
matrix dot-product with appropriate normalization (cosine
similarity) between respective frame representations of the
recap and episode as illustrated in the toy-example of Fig. 2.
We remove very dark or very bright frames, typical in poor

Query Top-5 retrieved results

D
en

se
N

et
R

es
N

et

Figure 1. Retrieval results for Recap from Episode Frames with
DenseNet (Top) v/s ResNet (bottom). We observe qualitatively
that DenseNet is able to match to the correct frames from the
episode more often.

lighting conditions or glares, to avoid spurious matches and
noisy labels.

Next, we choose a high threshold to identify matching
frames (0.85 in our case after analysis) and fetch all the
top matching frames along with their shot indices (the shot
where the frame is sourced from). We compute a set union
over all matched shots obtained by scoring similarities be-
tween the recap frame of shot s and denote this set as Ss. In
the example, we match 3 frames of a recap shot and identify
several episode shots shown in the blue box with Ss.

Weeding out spurious shot matches. The set Ss may con-
tain shots beyond a typical shot thread pattern due to spuri-
ous matches. These need to be removed to prevent wrong
importance scores from being obtained from the recap. To
do this, we first find the best matching shot in the episode.
We observe that taking top three matched frames for ev-
ery recap frame results in strong matches. Subsequently,
we pick the maximum similarity score for each unique shot
matched to a recap frame. This allows us to accumulate the
score for an episode shot if multiple frames of the episode
shot match with frames of the recap shot. The shot that
scores the highest (after summing up the scores) is consid-
ered the best-matched episode shot for recap shot s.

Next, we choose a window size of 21 (10 on either side)
and include all shots in Ss that fall within this window to a
new matched set, Ns. This is motivated by the typical du-
ration of a scene in a movie or TV episode (40-60 seconds)
and an average shot duration of 2-3 seconds. We repeat this
process until no more shots are added to the set Ns and dis-
card the rest in Ss. Thus, for a given shot from the recap, we
obtain all matching shots in the episode that are localized to
a certain region of high-scoring similarity (see Fig. 2). We
repeat this process for all frames and shots from the recap.

https://katha-ai.github.io/projects/recap-story-summ/

Similarity Matrix

 {770, 769, 761,

523, 513}

Valid frame encodings

Shape: 3 x 1664

Valid frame encodings

Shape: 18 x 1664

Matrix Dot-Product

(Cosine Similarity)

Sort and retrieve top

matching frames having

scores > 0.85

770 770 761 523

769 770

513

Similarity table of size 3 x 18. Cell

consists of corresponding shot number

sorted on the basis of similarity score.

Gray boxes indicates scores < 0.85

Set union of all such selected

shot-indices for all 3 frames.

Find the best Episode Shot:

For each recap frame:

1. Take top 3 matches.

2. Choose episode frames

corresponding to a unique shot and

note their maximum similarity score.

Matched episode shots for

recap shot

770 770 761

769 770

513

For each row unique shots are considered

along with their maximum similarity score

(color=yellowish orange)
Sum up the scores in the

list scoreshot-index for

each chosen shot

770

Shot matches

3, score770

769 1, score769

1, scores513513

Summary tuple of candidate shots

competing for best matching shot. First

entry for each shot index denotes its

frequency, while the second is the list of

matching scores.
Best Shot: 770

CHECK?

(Statement

in dashed box)

TERMINATE

YES

NO

No. of columns not to the scale

No. of columns not to the scale

START

Filter Dark and Bright

framesFrames of a recap

shot (n frames)

Frames of Episode

(m frames)

Extract DenseNet169

Embeddings

{770}

For illustration purpose, n=3 and m=18

761 1, score761

The set of all filtered episode

matching shots for recap shot .

Initial input is a singleton-set

 shot-index , collect all

 satisfying

and denote it as . CHECK if ?

Figure 2. Flowchart for identifying shots from the episode that appear in a recap and can be used as weak labels for story summarization.
The process involves identifying the list of high-scoring matching frames, indexing the shots, and then preventing spurious matches by
looking for high-scoring matches within a bounded duration. The flowchart presents an example of the process used to identify the set of
shots Ns from the episode that match to the recap shot.

Shot-index

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1.0
0.8
0.6
0.4
0.2

For

Shot-index

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1.0
0.8
0.6
0.4
0.2

For

Figure 3. Triangle smoothing process. Here x-axis denotes binary labels derived from the shot matching process, while y-axis shows soft
importance scores used to train our model. Top: The triangular filter is applied at each shot selected from the matching process. Scores
of shots falling within the window are updated. Bottom: In the second step, we add shot importance derived potentially from multiple
overlapping triangle filters. This typically happens when episode shots in close proximity are matched to the recap.

A.2. Label Smoothing

The intuition behind extending the recap matched shots ob-
tained in the previous section is to include chunks of the
sub-story that are important to the storyline. While a short
recap (intended to bring back memories) only selects a few
shots, a story summary should present the larger sub-story.
Selecting only one shot in a thread [31] also adversely af-
fects model training due to conflicting signals, as multiple
shots with similar appearance can have opposite labels. La-
bel smoothing solves both these issues.

Triangle Smoother. We hypothesize that the importance of
shots neighboring a matched shot are usually quite high and
use a simple triangle smoother to re-label the importance
of shots. In particular, we slide a window of size w center-
ing at positive labels and set the importance of neighboring
shots according to height of the triangle. The above process
is illustrated in Fig. 3 as the first step. In the second step,
we add and clip the soft labels of strongly overlapping re-
gions to prevent any score from going higher than 1. For
the sake of simplicity, we used triangle smoothing, how-
ever, one could also use other filters.

We choose w = 17 by analyzing the spread of the shots
and their importance scores and comparing them against a
few episodes for which we manually annotated the story
summaries.

Dialog labels. The above smoothing procedure generates
soft labels for video shots. For dialog utterances, we sim-
ply import the score of the shot that encompasses the mid-
timestamp of the dialog. The key assumption here is that
the dialog utterance associated with the matched shot is also
important.

A.3. Data Splits

For evaluation of our approach, PlotSnap is split into 4 types
of splits as described below:
1. IntraCVT (Intra-Season 5 fold cross-val-test) represents

5 different non-overlapping splits from 7 seasons of 24
(Season 2 to 8). Intra-season means episodes from each
season are present in the train/val/test splits. For exam-
ple, split-1 uses 5 episodes from the end of each season
for val and test (2, 3 respectively). Likewise, Split-5 (the
fifth fold) uses episodes from the beginning of the season
in val/test. We observe that Split-5 is harder.

2. X-Season (Cross-Season 7 fold cross-val-test) involves 7
non-overlapping splits with one season entirely kept for
testing (from Season 2 to 8), while the train and val use
18 and 5 episodes respectively from each season. This
strategy is used to test for the generalization of our model
on different seasons of the same series, 24.

3. X-Series (Cross-Series) split includes 8 seasons (seasons
2 to 9) from 24in train/val (19/4) and 2 seasons (seasons
2 and 3) from PB for the test. This split is designed to
check the effectiveness of our model across TV series.

4. Multiple labels split consists of a single non-overlapping
train/val/test split with 126/18/17 episodes from 24, re-
spectively. We collect story summary annotations from
3 sources for the test set (recap: GT, fan website: F, and
human annotation: H). This split is used for comparison
against labels from Fandom or Human annotations.

A.4. Label Consistency

As discussed in Tab. 8 (of the main paper), we show the
agreement between story summary labels obtained from
different sources. Consistency is evaluated on 3 kinds of
labels: From recap (GT), Fandom (F) and Human (H). We

season episode
Video Dialog

Cα PF1 Fκ Cα PF1 Fκ

S02 E21 0.978 0.51 0.337 0.964 0.51 0.335
S02 E23 0.937 0.407 0.135 0.966 0.472 0.182
S03 E20 0.959 0.684 0.595 0.939 0.715 0.629
S03 E22 0.907 0.568 0.422 0.861 0.553 0.409
S04 E20 0.954 0.671 0.47 0.949 0.716 0.568
S04 E21 0.981 0.618 0.405 0.983 0.504 0.286
S05 E21 0.886 0.521 0.27 0.872 0.497 0.249
S05 E22 0.994 0.573 0.282 0.991 0.611 0.334
S06 E20 0.986 0.639 0.432 0.975 0.689 0.534
S06 E21 0.979 0.645 0.437 0.96 0.618 0.439
S06 E22 0.965 0.557 0.297 0.929 0.632 0.406
S06 E23 0.981 0.496 0.263 0.986 0.475 0.206
S07 E20 0.942 0.684 0.451 0.968 0.67 0.382
S07 E22 0.849 0.531 0.349 0.892 0.54 0.334
S07 E23 0.993 0.525 0.215 0.988 0.541 0.235
S08 E21 0.233 0.68 0.527 0.715 0.667 0.518
S08 E22 0.968 0.685 0.507 0.948 0.728 0.538

Average 0.911 0.588 0.376 0.934 0.596 0.387

Table 1. Detailed overview of reliability scores for 17 episodes
from 24 (test set of multiple labels split) with the last row show-
ing the average across all episodes. Si and Ej stands for Season i
Episode j, Cα for Cronbach’s α, PF1 for Pairwise F1, and Fκ for
Fleiss’ κ.

assess the consistency of labels via Cronbach’s α, Pairwise
F1, and Fleiss’ κ statistics.

Tab. 1 expands on the individual scores obtained for each
of the 17 episodes. We observe that Cronbach’s α is consis-
tently high, while Fleiss’s κ varies typically between 0.2-0.5
indicating fair to moderate agreement.

B. Experiments and Results
In this section we expand our implementation details (Ap-
pendix B.1) and present additional details of the backbones
used for feature extraction (Appendix B.2). Extensive abla-
tion studies with regard to feature combinations and model
hyperparameters are presented in Appendix B.3.

In Appendix B.4, we present details of the modi-
fications that need to be made to adapt SoTA base-
lines such as MSVA [7], PGL-SUM [4], PreSumm [20],
and A2Summ [9] for comparison with TaleSumm. Ap-
pendix B.5 details how we adapted our model for SumMe
and TVSum, along with comprehensive hyperparameter
particulars. To conclude, Appendix B.6 shows extended
qualitative analysis, as in the main paper, on three other
episodes (S06E20, S07E22, and S05E21).

B.1. Implementation Details

Visual features. We first segment the episode into
shots using [34]. We adopt 3 specialized backbones

(for their combined effective performance; shown in
Tab. 2): (i) DenseNet169 [13] pre-trained on Ima-
geNet [24], SVHN [35], and CIFAR [17] for object seman-
tics; (ii) MViT [6] pre-trained on Kinetics-400 [14] for ac-
tion information; and (iii) OpenAI CLIP [23], pre-trained
on 4M image-text pairs, for semantic information.

Utterance features. We adapt RoBERTa-large [38] origi-
nally pretrained on the reunion of five datasets: (i) Book-
Corpus [37], a dataset consisting of 11,038 unpublished
books; (ii) English Wikipedia [3] (excluding lists, tables
and headers); (iii) CC-News [1], a dataset containing 63
millions English news articles crawled between Septem-
ber 2016 and February 2019; (iv) OpenWebText [2], an
opensource recreation of the WebText dataset used to train
GPT-2; and (v) Stories [32] a dataset containing a subset
of CommonCrawl data filtered to match the story-like style
of Winograd schemas [18]. Together these datasets weigh
160GB of text.

Given dialogs from the episode, our fine-tuning ob-
jective is to predict the important dialogs. We extract
word/token-level representations (w) from finetuned (but
frozen) RoBERTa-large (ϕFT

U) for the task of dialog story
summarization.

Frame sampling strategy. We randomly sample up to 25
frames per shot during training as a form of data augmenta-
tion. During inference, we use uniform sampling. We used
fourier position embeddings ES

j for indexing video frames.

Architecture details. We experiment with the number of
layers for ST, HS∈[1 : 3] and ET, HE∈[1 : 9], and find
HS=1 and HE=6 to work best. Except the number of lay-
ers, ST and ET have the same configuration: 8 attention
heads and D=128. Appropriate padding and masking is
used to create batches. We compare multiple local story
group sizes ng ∈ {5 : 30 : 5} and find ng=20 to work best.

Training details. Our model is trained on 4 RTX-2080
Ti GPUs for a maximum of 65 epochs with a batch size
of 4 (i.e. 4 entire episodes – each GPU handling one
episode). We adopt the AdamW optimizer [22] with pa-
rameters: learning rate=10−4, weight decay=10−3. We
use OneCycleLR [27] as learning rate scheduler with max
lr=10−3, and multiple dropouts [11]: 0.1 for projection to
128 dim inside video and utterance encoder; 0.2 for atten-
tion layers; and 0.2 for the classification head. The hyperpa-
rameters are tuned for best performance on validation set.

B.2. Feature Extraction

Prior to feature extraction, setting an appropriate fps for ev-
ery video is important to trade off between capturing all as-
pects of the video while keeping computational load low.
We find 8 fps to be a good balance between the two.

Visual Feature Backbones We present the details for three
backbones capturing different aspects of a video.

DenseNet169 f1. Feature extraction of salient ob-
jects/person in each frame is of utmost priority and is
achieved through DenseNet169 [13] pretrained on Ima-
geNet [24], SVHN [35], and CIFAR [17]. We consider
the frozen backbone without the linear classification head
to obtain flattened features, f1 ∈ R1664. Before feeding the
images, we apply a few preprocessing steps to sub-sample
raw images.
1. Frames are resized to 256×256 resolution along with

center cropping.
2. RGB pixel values are scaled to [0, 1] followed by mean

and standard deviation normalization.
We use the architecture as well as parameters from Py-

Torch Hub1, version pytorch/vision:v0.10.0.

MVIT f2. Beyond objects/person, their actions too affect
the importance of a shot, and hence having them serves the
purpose of representing a shot from a different perspective.
For this, we use MViT [6] pretrained on Kinetics-400 [14].
We feed the original video with some pre-processing as ex-
plained above to obtain feature embeddings, f2 ∈ R768.
With a window-size=32 and stride=16, we extracted per-
window encodings while padding zeros at the end (black-
frames) to account for selecting window-size amount of
frames.
1. Frame resizing to 256×256 followed by center-cropping

to 224×224 resolution.
2. Pixel scaling from 8-bit format to float format ([0, 1]).

Following this, mean and standard deviation normaliza-
tion is performed.

3. We chose MViT-Base 32×3 that ingests a chunk of video
(32 frames) at once and produces an embedding vector.

We import the architecture and pretrained parameters from
PytorchVideo2.

CLIP f3. This is a multi-modal backbone that can produce
representations corresponding to matching textual descrip-
tions. We borrow the CLIP [23] pre-trained model from the
huggingface [33] library and use their inbuilt image proces-
sor as well as feature extractor to obtain subsampled frame-
level encodings, f3 ∈ R512.
1. Short-side is resized to 224 pixels followed by center-

cropping (to 224×224).
2. Re-scaling 8-bit image to [0, 1] interval.
3. Mean and standard deviation normalization.

Dialog Features We test three different dialog features and
present the details as follows.

Fine-tuning Language Models. We fine-tune lan-
guage models such as PEGASUSLARGE [36], RoBERTa-
Large [38], and MPNet-base-v2 [28] for our task of extrac-
tive dialog summarization. To account for the small dataset
sizes, for all fine-tuning, we use the Adapter modules [12]

1https://pytorch.org/hub/
2https://pytorchvideo.org/

Layer Norm

Adapter

Feed-forward layer

Layer Norm

Adapter

2x Feed-forward layer

Multi-headed
attention

+

+

Language Model Encoder Layer

Feedforward
down-project

Feedforward
up-project

Nonlinearity (GELU)

+
Adapter

Layer

Figure 4. Architecture of the adapter module [12] and its inte-
gration with language model’s encoder layer. Left: The adapter
module has fewer parameters compared to the attention and feed-
forward layers in a Transformer layer and consists of a bottleneck
and skip-connection. Right: We add the adapter module twice
to each encoder layer. Once after the multi-head attention and the
other is placed after the two feed-forward layers typical of a Trans-
former architecture. For the Transformer decoder, in the case of
PEGASUSLARGE, we add one extra adapter after cross-attention as
well. Adaptation: When adapting the model, the purple and green
layers illustrated on the right module are trained on the down-
stream data and task, while the other blocks are frozen.

that add only a few trainable parameters in the form of
down- and up-projection layers as illustrated in Fig. 4.

RoBERTa-Large [38] and MPNet-base-v2 [28] are fine-
tuned for utterance-level binary classification to decide
whether the dialog utterance is important or not.

PEGASUSLARGE is trained originally to generate ab-
stractive summaries. Instead, we adapt it to generate sum-
mary dialogs. As the number of tokens accepted by the
PEGASUSLARGE model does not allow feeding all the di-
alog from the episode, we break it into 6 chunks.

Word-level embeddings. We use last hidden-state of the
encoder to obtain contextualized word-level embeddings,
w ∈ R1024 (768 for MPNet-base-v2). PEGASUSLARGE,
being a generative model (consisting of both encoder and
decoder), we keep only the encoder portion for word-level
feature extraction.

https://pytorch.org/hub/
https://pytorchvideo.org/

5 10 15 20 25 30 35
Window Size

48

49

50

51

52

53

54

Vi
de

o
Av

er
ag

e
Pr

ec
isi

on

layers = 1
layers = 2
layers = 3
layers = 4
layers = 5
layers = 6
layers = 7
layers = 8
layers = 9

5 10 15 20 25 30 35
Window Size

42

43

44

45

46

47

48

49

Di
al

og
 A

ve
ra

ge
 P

re
cis

io
n

layers = 1
layers = 2
layers = 3
layers = 4
layers = 5
layers = 6
layers = 7
layers = 8
layers = 9

Figure 5. Performance of TaleSumm for varying local story group size (also referred to as window size) and number of layers in the
episode-level Transformer ET. y-axis denotes the AP score for the Left: Video and Right: Dialog. We observe that a 6 layer model
HE = 6 works well together with a local story group size of ng = 20.

B.3. Feature and Architecture Ablations

All experiments are run on IntraCVT split, and we report
mean and standard deviation.

Visual features for Story summarization. Table 2 shows
the results for all combinations of the three chosen visual
feature backbones in a multimodal setup. We draw two
main conclusions: (i) The Shot Transformer encoder (ST)
shows improvements when compared to simple average or
max pooling. (ii) DMC (DenseNet + MViT + CLIP), the
feature combination that uses all backbones, performs well,
while MC shows on-par performance. Importantly, the fea-
ture combination is better than using any feature alone.

Language backbones for Story summarization. Different
from the previous experiment, Table 3 shows results for dif-
ferent dialog features with different word-to-utterance pool-
ing approaches in a multimodal setting. RoBERTa-Large
outperforms all other language models. Nevertheless, the
other models are not too far behind.

Number of ET layers and local story group size. Two
important hyperparameters for our model are the number
of layers HE in the ET and the local story group size ng .
Fig. 5 shows the performance on video AP (left) and dialog
AP (right) with a clear indication that 6 layers and a story
group size of 20 shots are appropriate.

B.4. Adapting SoTA Approaches for PlotSnap

In this section, we discuss how we adapt different video-
and dialog-only state-of-the-art baselines for our task.

MSVA [7] considers frame-level features from multiple
sources and applies aperture-guided attention across all
such feature streams independently, followed by intermedi-

ate fusion and a linear classification head that selects frames
based on predicted importance scores. Since we are model-
ing at the level of the entire episode, we feed condensed
shot features (after Avg or Max pooling or ST) of each
backbone: DenseNet169 (Xo), MViT (Xr), and CLIP (Xf)
through three different input streams and output shot-level
importance scores.

Our model is different from MSVA as MSVA treats each
feature separately, while we perform early fusion and con-
catenate representations from multiple backbones even be-
fore obtaining a compact video shot representation. Tale-
Summ is also developed for encoding and making predic-
tions on multiple modalities, while MSVA is not.

PGL-SUM [4] splits the video in small equal-sized group
of frames. Similar to our work, contextualization is per-
formed within local multi-headed self-attention on small
groups, while another is at global level using global multi-
headed attention for the entire video. Later, both are merged
via addition along the feature axis and subsequently passed
through an MLP classification head to obtain frame-level
scores. To adapt PGL-SUM to our work, we again think of
shots as the basic unit and concatenate visual features from
all streams (f1, f2, and f3), followed by pooling (ST or Max
or Avg pooling) and then PGL-SUM to generate shot-level
importance scores.

PGL-SUM has some similarities to our approach as
both involve local groups. Interestingly, PGL-SUM creates
groups of frames to perform summarization for short videos
of a few minutes, while TaleSumm creates groups of shots
and dialog utterances to generate summaries for 40 minute
long episodes. Among technical contributions, we also ex-
plore different attention mechanisms such as across the full-

Pooling Avg Max Cat Tok Stack ⊞

Concatenate ✓ ✓ ✓ NC ✓ ✓

DMC Vid AP 54.1 ± 4.5 54.1 ± 4.6 54.2 ± 4.1 54.1 ± 4.0 53.9 ± 4.7 54.2 ± 3.3

Dlg AP 48.7 ± 4.1 48.8 ± 4.4 48.9 ± 4.7 49.0 ± 4.8 49.1 ± 4.8 49.0 ± 4.9

DM Vid AP 54.0 ± 3.8 54.1 ± 3.3 54.0 ± 4.1 53.9 ± 3.2 53.6 ± 4.3 53.7 ± 3.0

Dlg AP 48.6 ± 4.4 48.8 ± 4.4 48.9 ± 4.4 48.6 ± 3.6 48.4 ± 4.8 48.6 ± 4.3

MC Vid AP 53.8 ± 3.6 53.9 ± 4.0 53.8 ± 4.5 54.0 ± 4.9 53.8 ± 4.2 54.2 ± 4.3

Dlg AP 48.5 ± 4.6 48.8 ± 4.1 48.7 ± 4.5 49.0 ± 4.1 48.5 ± 4.7 49.1 ± 4.2

DC Vid AP 54.0 ± 4.5 54.1 ± 4.3 54.1 ± 4.0 54.0 ± 4.0 54.1 ± 3.9 54.1 ± 4.2

Dlg AP 48.2 ± 4.9 48.7 ± 4.5 48.9 ± 4.7 49.0 ± 4.6 49.0 ± 4.8 49.0 ± 4.9

D Vid AP 53.5 ± 4.2 53.4 ± 4.2 54.0 ± 3.8 - - -
Dlg AP 48.1 ± 4.2 48.6 ± 4.3 48.9 ± 4.4 - - -

M Vid AP 52.9 ± 3.2 53.6 ± 3.6 53.5 ± 3.4 - - -
Dlg AP 48.2 ± 4.0 48.4 ± 3.9 48.7 ± 4.6 - - -

C Vid AP 53.9 ± 3.7 53.9 ± 3.9 54.1 ± 3.7 - - -
Dlg AP 48.6 ± 4.2 48.7 ± 4.2 48.7 ± 4.0 - - -

Table 2. TaleSumm ablations for different feature combination strategies, using both video and dialog modalities. Feature ablations are
performed over the visual modality. Columns describe the Pooling approaches used to form shot-level from frame-level representations;
Concatenate corresponds to how backbone feature are combined (concatenate ✓ or as separate tokens (NC)). Stack pooling is an alternative
approach to ⊞, where instead of condensing the aggregated (concatenated) visual features via a linear layer WP ∈ R3×3D , we obtain
individual feature importance score (with WP ∈ R1×D followed by tanh and softmax). D: DenseNet169, M: MViT, and C: CLIP. All
results are for TaleSumm that captures Episode level interactions.

Pooling Max Avg wCLS

PEGASUSLARGE [36]
Vid AP 52.7 ± 4.3 53.1 ± 4.2 53.1 ± 4.7

Dlg AP 47.9 ± 3.6 48.0 ± 5.1 47.9 ± 4.9

MPNet-Base [28]
Vid AP 53.2 ± 3.9 53.1 ± 3.7 53.5 ± 3.4

Dlg AP 48.0 ± 4.4 47.2 ± 3.2 48.6 ± 5.0

RoBERTa-Large [38]
Vid AP 54.1 ± 3.8 54.2 ± 3.3 54.1 ± 4.2

Dlg AP 49.0 ± 4.6 49.0 ± 4.9 49.0 ± 4.3

Table 3. TaleSumm ablations for various dialog utterance feature
backbones. Visual features are fixed to DMC.

episode (FE) or within a local story group (SG). Different
from PGL-SUM, we introduce a story group token that al-
lows to capture the essence of a local story group.

PreSumm [20] is used for text-only extractive summariza-
tion which takes word-level inputs and produces sentence-
level probability scores. To represent each episode, the ut-
terances are concatenated, lower-cased, and separated by
CLS and SEP tokens into a single line input. The PreSumm
model leverages word embeddings from pre-trained BERT-
base [5] language model. Considering the long inputs in
our case, we extend the existing positional embeddings of
BERT from 512 to 10000 by keeping the original embed-
dings and replicating the last embeddings for the remain-
der. At the sentence level, the corresponding CLS token is

fed into two transformer encoder layers for contextualiza-
tion, followed by a small MLP and sigmoid operation to
generate per-sentence scores. The model is trained using
the Adam [16] optimizer with Binary Cross-Entropy loss.

PreSumm is very different from our work as it operates
directly on tokens, while our model develops a hierarchical
approach going from words to dialogs to local story groups.

A2Summ [9] is a contemporary multimodal summariza-
tion (MSMO) baseline, primarily designed to align tempo-
ral correspondence between video and text signals through
a dual-contrastive loss approach. They also introduce a
dataset, BLiSS [9], comprising 13,303 pairs of livestream
videos and transcripts, each with an average duration of
5 minutes, along with multimodal (VT2VT) summaries.
A2Summ exploits cross-modality correlations within and
between videos through dual contrastive losses. These in-
clude: (a) inter-sample contrastive loss (operates across dif-
ferent sample pairs within a batch, leveraging the intrin-
sic correlations between video-text pairs), and (b) an intra-
sample contrastive loss (works within each sample pair,
emphasizing the similarities between ground-truth video
and text summaries while contrasting positive features with
hard-negative features).

We adapt A2Summ for PlotSnap, where we work at
the episodic level, by using max-pooling with an MLP for

video features and average-pooling for dialog (text) fea-
tures to derive shot- and utterance-level representations.
We create explicit intra-sample attention masks encourag-
ing temporal alignment, allowing video shots to attend to
their corresponding utterances and permitting video and
utterance tokens to fully attend to their respective coun-
terparts. Considering memory constraints, we maintain a
batch size of 4 (four entire episodes - inter-sample con-
trasting) on a single NVIDIA GeForce RTX-2080 Ti GPU.
We adopt CyclicLR [26] with a maximum learning rate of
10−4 and the ‘triangular2’ mode. A2Summ model com-
prises 6 encoder layers and incorporates multiple dropout
layers [11]: (a) dropout video =0.1, (b) dropout text
=0.2, (c) dropout attn =0.3, and (d) dropout fc =0.5,
while keeping rest the of the hyperparameters the same.
Training extends to a maximum of 50 epochs, with the
AdamW [22] optimizer utilized, featuring a learning rate
of 10−5 and a weight decay [21] =0.01.

In PlotSnap, where episodes show related content, the
application of inter-episode contrastive learning negatively
impacts the model’s performance. This is due to the vari-
ability in the importance of related story segments across
episodes, which depends on the specific context.

B.5. Details for SumMe and TVSum

In this section, we will discuss how we adapted our model
for SumMe [8] and TVSum [29], some experimentation de-
tails, and corresponding evaluation metrics.

Adaptation. We used our video-based model on both
datasets, inheriting features from MSVA3 [7]. To cap-
ture shot-level details, we stacked 15 contiguous frame-
embeddings (as previous methods utilized ground-truth la-
bels indexed at every 15th frame), and for group-level, we
used n frame per seg attribute of the dataset. We used
continuous-index-based time embeddings for shot-frames.
Essentially, we assume that a shot consists of 15 frames as
SumMe and TVSum require predictions at every 15 frames.

Hyperparameter configuration. We determine the config-
uration based on the best validation score obtained over five
random splits (5-RCV). This time our model is trained on a
single NVIDIA GeForce RTX-2080 Ti GPU for a maximum
of 300 epochs for SumMe and 100 epochs for TVSum, with
a batch size of 1. Additional dataset-specific hyperparame-
ters are detailed in Table 4. In common, we have AdamW
optimizer [22] with parameters: learning rate =5×10−5,
weight decay [21] =10−3. We use CyclicLR [26] for learn-
ing rate scheduling with max lr =5×10−4 and triangular2
mode. ReLU is used for classification head and GELU for
projection and attention modules.

3https://github.com/TIBHannover/MSVA/tree/master

B.6. Extended Qualitative Analysis

In this section, we analyze 3 more episodes and compare the
model’s prediction against all three labels (GT, F, and H).
Recall, the labels denoted F (Fandom) are based on sum-
marized plot synopses from the 24 fan site4 that includes
the key events in the story (as a text description). Plot syn-
opses are short textual descriptions of the key story events of
an episode. We ask annotators to use the plot synopses and
tag the start-end duration for story sequences corresponding
to the description. We refer to these labels as Fandom (F)
and use them for qualitative evaluation. While the H-labels
are annotations from a human, based on what they feel is
relevant summary as per the narrative.

Qualitative evaluation. We present importance scores for
three episodes: S06E205, S07E226, and S05E217, in Fig. 6,
Fig. 7, and Fig. 8, respectively. We observe that the model
predictions are quite good and not only match the ground-
truth labels (on which the model is trained) but also the fan-
dom and human annotations. Please refer to the figure cap-
tions for additional comments on episode-specific remarks.

C. Future Work

Ingesting ∼40 minute long videos is a challenging prob-
lem. Aligning different modalities, such as processing
a 40-minute video containing 2,500 frames (at 1fps) and
4,500 dialogue words, totaling approximately 8000 tokens,
may require a larger GPU memory. And most of the L-
VLMs [15, 19, 25] struggle to handle contexts exceeding
8,000 tokens, and even if they do, consumer-grade GPUs
may lack the capacity to accommodate them.

Our approach considers coarse-grained visual infor-
mation, which we demonstrate is beneficial for story-
summarization. Considering more fine-grained visual info,
such as person and face tracks across frames, and their emo-
tions, would be useful. Our idea of using recap-inspired
story summary labels or modeling approach are not specific
to thrillers and can be easily extended to other genres and
shows with recaps. Having speaker information in dialog
utterances with mapping to character faces would probably
improve performance on the summarization task. The local
story groups are a proxy to scene segments of an episode.
Replacing them with actual scene segments may improve
our model’s performance for summarization.

Finally, further analysis and experiments are required to
determine the quality of these methods [30], particularly

4https://24.fandom.com/wiki/Wiki 24
5https://24.fandom.com/wiki/Day 6: 2:00am-3:00am talks about

the key story events in S06E20 in a Previously on 24 section (see Fig. 6).
6https://24.fandom.com/wiki/Day 7: 6:00am-7:00am talks about

the key story events in S07E22 in a Previously on 24 section (see Fig. 7).
7https://24.fandom.com/wiki/Day 5: 4:00am-5:00am talks about

the key story events in S05E21 in a Previously on 24 section (see Fig. 8).

https://github.com/TIBHannover/MSVA/tree/master
https://24.fandom.com/wiki/Wiki_24
https://24.fandom.com/wiki/Day_6:_2:00am-3:00am
https://24.fandom.com/wiki/Day_7:_6:00am-7:00am
https://24.fandom.com/wiki/Day_5:_4:00am-5:00am

CTU is finding
Cheng...

These two are
sleeping together...

- If you don't find this component...will
initiate an appropriate response.
- You're saying there's a spy?

We're all set...
Anything you know

about Cheng...?
- What'd you say?
 -Bloomfield

- You betrayed me and your country...
- Bring the component back...

Stay away from her...

Time (in minutes)0 10 20 30 40

 H

 F

 G
T

 O
ur

s

Figure 6. TaleSumm predictions on S06E20 of 24 (test set). “Ours” filled-plot illustrates the importance score profile over time, where
orange patches indicate story segments selected for summarization. Annotations are shown below: ground-truth (GT), fandom (F), and
human annotated (H). We number the grouped frames representing the predicted contiguous orange chunks as shot groups (SG-n), e.g. this
episode has 8 SGs. The story: The White House directs CTU to locate Cheng, as depicted in SG-1, who possesses a Russian sub-circuit
board that threatens national security. In SG-2, President Suvarov warns of military consequences if the Chinese agent with the circuit
board isn’t intercepted. SG-3,4,7 shows how Lennox suspects a spy within the administration and uncovers Lisa’s treason. President Noah
Daniels instructs Lisa to bring the component back by misleading her partner, Mark Bishop. In SG-5,6, Jack questions Audrey about
Cheng, leading to a standoff with Doyle. Audrey mentions “Bloomfield,” prompting research by Chloe. In his holding room, Heller warns
Jack to stay away from Audrey due to the deadly consequences associated with him (SG-8). Intricate relationships and the imminent threat
of international conflict mark the overall content of this episode.

What's the target?
Washington Center's

the target...
- Justice Dept. looking...Jonas car bombing...
- Justice Dept. is asking my whereabouts...?

See this as a sign to
stay with your father.

Give me the
Canister...

...Canister is gone? I just needed to go
out of here...

- Jibraan your brother is here.
- Break Almeida out...or your daughter dies.

 H

 F

 G
T

 O
ur

s

Time (in minutes)0 10 20 30 40

Figure 7. TaleSumm predictions on S07E22 of 24 (test set). “Ours” filled-plot illustrates the importance score profile over time, where
orange patches indicate story segments selected for summarization. Annotations are shown below: ground-truth (GT), fandom (F) and
human annotated (H). We number the grouped frames representing the predicted contiguous orange chunks as shot groups (SG-n), e.g. this
episode has 8 SGs. The story: In a tense sequence, as shown in SG-1, Jack resorts to torture to extract information from Harbinson
about the impending attack but is left empty-handed. In SG-2, following the murder of Jonas Hodges, Olivia Taylor faces scrutiny from
the Justice Department. Meeting with Martin Collier, she denies transferring funds, revealing a sinister plot. Meanwhile, SG-3 shows
Kim Bauer’s plans are disrupted by a flight delay, leading to a strained father-daughter relationship. SG-4,5 displays how Jack, aided by
Chloe O’Brian and Renee Walker, captures Tony Almeida and interrogates him about a dangerous canister, followed by Renee uncovering
Jibraan’s location, and a high-stakes exchange ensues at the Washington Center station. Jack detonates the canister, succumbing to its
effects. As a consequence (SG-6), Cara Bowden reports Tony’s failure to Alan Wilson, adding tension to the unfolding crisis. Olivia
returns to the White House, explaining her absence to Aaron Pierce (SG-7), which beautifully connects back to the SG-2. The narrative
takes a dire turn as Cara blackmails Jack for the safety of Kim (SG-8), introducing a new layer of suspense and complexity to the unfolding
events. The presence of SG-1,6,7 (absent in GT) clearly highlights our model’s ability to complete the overall story arc.

because evaluating long video summarization using human
judgment is very time-consuming.

However, we believe that this work provides a window
into this challenging problem and can help facilitate further
research in this area.

References
[1] Common Crawl - News. https://commoncrawl.org/

blog/news-dataset-available, 2016. 4

[2] OpenWebText. https : / / github . com / jcpeterson /
openwebtext?tab=readme-ov-file, 2019. 4

[3] English Wikipedia. https://en.wikipedia.org/wiki/
English Wikipedia, 2021 – Present. 4

[4] Evlampios Apostolidis, Georgios Balaouras, Vasileios
Mezaris, and Ioannis Patras. Combining Global and Lo-
cal Attention with Positional Encoding for Video Summa-
rization. In IEEE International Symposium on Multimedia
(ISM), 2021. 4, 6

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

https://commoncrawl.org/blog/news-dataset-available
https://commoncrawl.org/blog/news-dataset-available
https://github.com/jcpeterson/openwebtext?tab=readme-ov-file
https://github.com/jcpeterson/openwebtext?tab=readme-ov-file
https://en.wikipedia.org/wiki/English_Wikipedia
https://en.wikipedia.org/wiki/English_Wikipedia

Time (in minutes)0 10 20 30 40

- The aircraft must be shot down...
- ATC recieved a VCI distress signal...

Bauer has nowhere
to run...

- Aircraft is in landing profile... Abort!
- Order your man to fire now...

- Pres. Logan...pay for Palmer's murder.
- I'm sorry Charles, you don't deserve this...

- ...How sorry I am for everything...
- If recording of yours leak,...compromise national security.
- We'll be ready?

 H

 F

 G
T

 O
ur

s

Figure 8. TaleSumm predictions on S05E21 of 24 (test set). “Ours” filled-plot illustrates the importance score profile over time, where
orange patches indicate story segments selected for summarization. Annotations are shown below: ground-truth (GT), fandom (F), and
human annotated (H). We number the grouped frames representing the predicted contiguous orange chunks as shot groups (SG-n), e.g. this
episode has 5 SGs. This episode stands out due to its rapid and significant story advancements, where each sub-story holds apparent
importance. Also, human annotations are a bit off in comparison to the ground-truth (can be verified from reliability scores shown
in Tab. 1). Importantly, our model considers opinions from all the sources. The story: In the SG-1,2, President Logan, pretending
surprised, learns from Admiral Kirkland that Flight 520, now under Jack’s control, is a potential threat. Despite Mike’s doubts about Jack’s
intentions, Kirkland urges immediate action, advocating for shooting down the plane. Logan, pretending shock, reluctantly authorizes the
attack. Karen alerts Jack to the order, leading to a tense situation. As the plane assumes a landing profile, Kirkland suggests calling off
the strike, but Pres. Logan insists on taking it down. Further, in SG-3, Graem criticizes Logan’s decision, emphasizing the importance of
capturing Jack, but Logan assures Graem of recapturing him. Meanwhile, in SG-4, Jack, having secured incriminating evidence, vows to
make Logan pay for President Palmer’s assassination. In a surprising turn, as shown in SG-5, President Logan contemplates suicide, but
an unexpected call from Miles Papazian presents an alternative – the destruction of the recording. Encouraging Miles to act, Logan faces a
critical juncture in the unfolding crisis. Overall the entire episode sets the stage for a series of dramatic events, stressing the depth of deceit
and the potential consequences for key characters.

amsgrad d model drop fc/trm/proj dec l enc l wd act clf/mlp/trm ffs

SumMe [8] True 512 0.5/0.2/0.2 3 1 0.0001 r/g/g Stack
TVSum [29] False 768 0.7/0.4/0.2 6 1 0.01 r/g/g ⊞

Table 4. Hyperparameter configuration for SumMe and TVSum. d model specify the dimension for the transformer module’s in-
ternal representation, while dec l and enc l denote # of decoder and encoder layers, respectively. Other hyperparameters include
drop fc/trm/proj for dropout at classification head, attention module, and projection module, wd stands for weight decay parameter
(used inside AdamW [22]), act clf/mlp/trm for activation function used in classification head, projection, and attention module, with r
for ReLU and g for GELU. Lastly, ffs stands for feature fusion style, with Stack and ⊞ depicting the pooling strategy showed in Table 2.

Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. arXiv:1810.04805,
2018. 7

[6] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale vision transformers. In International Conference
on Computer Vision (ICCV), 2021. 4, 5

[7] Junaid Ahmed Ghauri, Sherzod Hakimov, and Ralph Ewerth.
Supervised Video Summarization Via Multiple Feature Sets
with Parallel Attention. IEEE International Conference on
Multimedia and Expo (ICME), pages 1–6s, 2021. 4, 6, 8

[8] Michael Gygli, Helmut Grabner, Hayko Riemenschneider,
and Luc Van Gool. Creating summaries from user videos. In
European Conference on Computer Vision Workshops (EC-
CVW), 2014. 1, 8, 10

[9] Bo He, Jun Wang, Jielin Qiu, Trung Bui, Abhinav Shrivas-
tava, and Zhaowen Wang. Align and Attend: Multimodal
Summarization with Dual Contrastive Losses. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2023.
4, 7

[10] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015. 1

[11] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors.
ArXiv, abs/1207.0580, 2012. 4, 8

[12] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In International Conference on Machine
Learning (ICML), 2019. 5

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 1, 4, 5

[14] Will Kay, João Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Apostol Natsev, Mustafa Suley-
man, and Andrew Zisserman. The Kinetics Human Action
Video Dataset. CoRR, abs/1705.06950, 2017. 4, 5

[15] Wonjae Kim, Bokyung Son, and Ildoo Kim. ViLT: Vision-
and-Language Transformer Without Convolution or Region
Supervision. In International Conference on Machine Learn-
ing, 2021. 8

[16] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980, 2014. 7

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. cs.toronto.edu, 2009. 4,
5

[18] Hector J. Levesque, Ernest Davis, and Leora Morgenstern.
The winograd schema challenge. In Proceedings of the Thir-
teenth International Conference on Principles of Knowledge
Representation and Reasoning, 2012. 4

[19] Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H.
Hoi. BLIP: Bootstrapping Language-Image Pre-training for
Unified Vision-Language Understanding and Generation. In
International Conference on Machine Learning, 2022. 8

[20] Yang Liu and Mirella Lapata. Text Summarization with Pre-
trained Encoders. In Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), 2019.
4, 7

[21] Ilya Loshchilov and Frank Hutter. Decoupled Weight De-
cay Regularization. In International Conference on Learning
Representations (ICLR), 2017. 8

[22] Ilya Loshchilov and Frank Hutter. Decoupled Weight De-
cay Regularization. In International Conference on Learning
Representations (ICLR), 2017. 4, 8, 10

[23] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning
(ICML). PMLR, 2021. 4, 5

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
pages 211–252, 2015. 1, 4, 5

[25] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil-
laume Couairon, Wojciech Galuba, Marcus Rohrbach, and
Douwe Kiela. FLAVA: A foundational language and vision
alignment model. In CVPR, 2022. 8

[26] Leslie N. Smith. Cyclical Learning Rates for Training Neu-
ral Networks. In Winter Conference on Applications of Com-
puter Vision (WACV), 2015. 8

[27] Leslie N. Smith and Nicholay Topin. Super-convergence:
very fast training of neural networks using large learning
rates. In Defense + Commercial Sensing, 2018. 4

[28] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan
Liu. MPNet: Masked and Permuted Pre-Training for Lan-
guage Understanding. In Advances in Neural Information
Processing Systems (NeurIPS), 2020. 5, 7

[29] Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejan-
dro Jaimes. TVSum: Summarizing web videos using titles.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 1, 8, 10

[30] Liyan Tang, Tanya Goyal, Alex Fabbri, Philippe Laban,
Jiacheng Xu, Semih Yavuz, Wojciech Kryscinski, Justin
Rousseau, and Greg Durrett. Understanding Factual Errors
in Summarization: Errors, Summarizers, Datasets, Error De-
tectors. In Association of Computational Linguistics (ACL),
2023. 8

[31] Makarand Tapaswi, Martin Bäuml, and Rainer Stiefelhagen.
StoryGraphs: Visualizing Character Interactions as a Time-
line. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2014. 3

[32] Trieu H. Trinh and Quoc V. Le. A Simple Method for Com-
monsense Reasoning. ArXiv, abs/1806.02847, 2018. 4

[33] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s
transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019. 5

[34] Yusseri Yusoff, William J. Christmas, and Josef Kittler. A
Study on Automatic Shot Change Detection. In European
Conference on Multimedia Applications, Services and Tech-
niques, 1998. 4

[35] Netzer Yuval. Reading digits in Natural Images with Unsu-
pervised Feature Learning. In Advances in Neural Informa-
tion Processing Systems-Workshop (NeurIPS-W), 2011. 4,
5

[36] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu.
Pegasus: Pre-training with extracted gap-sentences for ab-
stractive summarization. In International Conference on Ma-
chine Learning (ICML). PMLR, 2020. 5, 7

[37] Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.
Aligning Books and Movies: Towards Story-like Visual Ex-
planations by Watching Movies and Reading Books. In arXiv
preprint arXiv:1506.06724, 2015. 4

[38] Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A Robustly
Optimized BERT Pre-training Approach with Post-training.
In Proceedings of the 20th Chinese National Conference on
Computational Linguistics, 2021. 4, 5, 7

	. Dataset Details
	. Shot Matching
	. Label Smoothing
	. Data Splits
	. Label Consistency

	. Experiments and Results
	. Implementation Details
	. Feature Extraction
	. Feature and Architecture Ablations
	. Adapting SoTA Approaches for PlotSnap
	. Details for SumMe and TVSum
	. Extended Qualitative Analysis

	. Future Work

