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Supplementary Material

A. Additional Results

In this section, we include some additional results which
could not be included due to space constraints in the main
paper. In particular, we demonstrate the ability of our ap-
proach to perform context-aware multi-object insertion in
Sec. A.1. We also show additional results using SmartMask
for object insertion with better background preservation in
Sec. A.2. We provide additional results analysing the abil-
ity of our model to perform mask-free insertion in Sec. A.3.
Finally, we include additional results comparing our output
mask quality with SmartBrush mask-head outputs [23] and
various Inpaint+HQSAM methods in Sec. A .4.

A.1. SmartMask for Multiple Object Insertion

While adding a single object to an input image is useful,
in practical applications users would typically want to add
multiple objects to the input image in order to obtain a de-
sired output scene. For instance, given an image depicting
a grassy field, the user may wish to add multiple objects
{ } such that the final scene aligns
with the context
(Fig. 1). In this section, we show that un-

like prior works which are limited to adding each object in-
dependently, the proposed approach allows the user to per-
form multiple-object insertion in a context-aware manner.

Results are shown in Fig. 1, 2. In particular, we show
comparisons with prior inpainting methods when a) all ob-
jects (e.g. bench, man, woman, dog in Fig. 1) are inserted
all at once, and b) different objects are inserted in a sequen-
tial manner. We observe that when inserting all objects at
once, prior works typically lead to 1) incorrect/missing ob-
jects (e.g. missing dog, additional person in Fig. 1), or, 2)
introduce visual-artifacts (e.g., people facing bench’s back).
On the other hand, when adding different objects in se-
quential manner, we observe that prior works often lead
to inconsistency-artifacts. For instance, when adding the
{ } in Fig. 1, we observe that SD-
Inpaint [19] leads to outputs which put the woman and dog
on back of the bench. Commercial state-of-the-art Adobe
GenFill [1] performs better however the dog and woman do
not appear to be sitting on the same bench as man. Further-
more, the generated objects ( in row-
5) can appear non-interacting when generated in a sequen-
tial manner. SmartMask helps address this by allowing the
user to first add a coherent sequence of context-aware ob-
ject masks, before using SDXL-based-ControlNet-Inpaint
[22, 24] model to perform precise object insertion.

A similar observation is also found in in Fig. 2, where we
see that prior inpainting methods [1, 19] either lead to (a) in-
correct objects (e.g., missing child, additional person) when
adding all objects at once, or, (b) introduce artifacts (e.g.

in row-3, and in row-5)
when adding objects sequentially. Furthermore, the object
insertion is done in a context-unaware manner. For instance,
when adding near the hand of the child in row-5, we
observe that Adobe GenFill [1] simply adds a big-flower
around the hand region. In contrast, the context-aware abil-
ity of SmartMask model allows it to add the flowers as a
bouquet which is held by the child, thereby allowing more
coherent multi-object insertion over prior works.

A.2. Additional Results for Single Object Insertion

In this section, we include additional results on using Smart-
Mask for single-object insertion across diverse object cate-
gories. Results are shown in Fig. 3. Similar to the results
in the main paper, we find that prior image inpainting meth-
ods typically lead to huge changes in the image background
when adding new objects. For instance, when adding
(row-1, Fig. 3), we observe that
prior works completely remove the background table with
birthday decorations. In contrast, the proposed approach is
able to generate scene-aware masks which can interact with
already existing objects in the input image. This allows it to
place the child as if sitting on the table in the original image.
We also observe that the effect of compromised back-
groud preservation is even more severe when adding new
objects near already existing humans in the input image. For
instance, in row-4 (Fig. 3) we observe that when adding a
next to a man sitting on top of mountain rock, prior
inpainting works e.g., SDInpaint, SDXL-Inpaint[ 16, 19] ei-
ther convert the man himself to a woman, or, add two
woman on the image which replace the man altogether. This
is clearly undesirable if the user simply wants a final scene
with a couple sitting on top of a mountain rock. SmartMask
helps address this by first predicting a precise object mask
for adding the woman on the side of the man, before then
using ControlNet-Inpaint [22, 24] model for precise object
insertion without affecting the image regions for the man.

A.3. Mask-free Object Insertion

A key advantage of SmartMask is that unlike prior works
which rely on a user-provided coarse mask, the proposed
approach can also be used without user-mask guidance.
This allows SmartMask to facilitate mask-free object inser-
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Figure 1. SmartMask for multi-object insertion. We observe that prior state-of-the-art image inpainting methods [1, 19] either lead to 1)
incorrect objects (missing dog) or visual-artifacts (e.g., people facing bench’s back) when adding all objects at once (row-2, row-4), or,
2) introduce inconsistency-artifacts (e.g., woman and dog in front of bench in row-3, dog and woman not sitting on same bench in row-5)
when adding objects sequentially. Furthermore, the generated objects (172an, woman and dog in row-5) can appear non-interacting when
generated in a sequential manner. SmartMask helps address this by allowing the user to first add a coherent sequence of context-aware

object masks, before using SDXL-based-ControlNet-Inpaint [22, 24] model to perform precise object insertion for multiple objects.
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Figure 2. SmartMask for multi-object insertion. We observe that prior state-of-the-art image inpainting methods [1, 19] either lead to
incorrect objects (row-2, row-4) when adding all objects at once, or, introduce artifacts (e.g. worman in row-3, man’s face and woman’s dress
in row-5) when adding objects sequentially. SmartMask helps address this by allowing the user to first add a sequence of context-aware
object masks, before using SDXL-based-ControlNet-Inpaint [22, 24] model to perform precise object insertion for multiple objects.
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Figure 3. Additional Results for Single Object-Insertion. We observe that as compared to with state-of-the-art image inpainting [3, 16,
19, 23] methods, SmartMask allows the user to perform object insertion while better preserving the background around the inserted object.



tion, where it automatically provides diverse suggestions for
inserting the target-object in the input image.

Results are shown in Fig. 4, Fig. 5. We observe that
unlike prior image-inpainting methods which rely on user-
provided masks for determining object location and scale,
SmartMask also allows for mask-free object insertion. This
allows the user to generate diverse object insertion sugges-
tions for putting the target object (e.g., in row-1 Fig. 4,

in row-5 Fig. 5) in the input image at different posi-
tions and scales. We also observe that the masks are gen-
erated in a scene-aware manner, and can therefore account
for the existing scene elements when adding the new object.
For instance, when adding in row-5 Fig. 4, we
observe that model autoamtically predicts diverse sugges-
tions where the man is sitting or lying down on the bed in
diverse poses. Similarly, when adding
in row-3 Fig. 4, the car is positioned at
correct pose and angle on the road region, despite the turn-
ing and slanted nature of the road. Similarly, when adding
in Fig. 5, we observe that Smart-
Mask is able to understand the scene-geometry and is able
to provide diverse suggestions for positioning the lamp both
on the floor and the background cabinets.

Finally, we also observe that the object insertion sugges-
tions are generated at different scales depending on the po-
sition within the input image. Thus, objects close to camera
are added through larger masks while objects away from
camera are generated using smaller masks (e.g.,

in row-4 Fig. 5).

A.4. Additional Results on Output Mask Quality

We also report additional results comparing output mask
quality with Smartbrush [23] mask head which also pre-
dicts an object mask for the inserted object in addition to
the inpainted output. Furthermore, we also compare the
performance of SmartMask generated masks with Inpaint
+ HQSAM methods when user bounding-box guidance is
present. To this end, given an input image, object descrip-
tion and bounding-box mask, we first use an inpainting
method e.g. Adobe SmartBrush [23] in order to inpaint the
target object in the scene. The inpainted image output and
corresponding bounding box are then used as input to the
recently proposed HQ-SAM [1 1] model in order to obtain
segmentation masks for the target object.

Results are shown in Fig. 6, 7. We observe that Smart-
Brush mask head [23] only generates very coarse masks
for the target object during inpainting. Furthermore, the
SmartBrush masks often have artifacts e.g., in Fig. 6
and Fig. 7. Passing the output of the
SmartBrush inpainting to HQ-SAM [ 1] instead generates
more finer quality masks. However, the generated masks
are still fairly coarse and still have noticeable artifacts. For
instance, when adding a tree to an outdoor scene with a lake

(Fig. 6), we observe that SmartBrush + HQSAM generates
very coarse masks for the tree region. In contrast, Smart-
Mask is able to generate significantly more detailed and
diverse masks for the target object (77¢¢). Similarly, even
when adding a to a living room scene (re-
fer Fig. 7), we observe that SmartBrush + HQSAM masks
typically add very coarse masks for the target chair/couch.
In contrast, SmartMask is able to generate diverse variations
with more finegrain details e.g., chair structure, pose, style
etc. for inserting the target object in the original image.

In addition to poor quality mask outputs (refer Fig. 6, 7),
we observe that Inpaint + HQSAM methods (i.e. inpainting
first and then using HQSAM to obtain target object masks)
can also lead to scene-unaware masks (refer Fig. 8). For
instance, in Fig. 8 we observe that when inpainting the tar-
get object (i.e. ) in the bounding box area, Adobe
SmartBrush [23] modifies the background to also add a
chair (row-2). The use of HQSAM [11] on the inpainted
outputs thus leads to masks which portray the woman as
sitting in the air in the original image (row-3). In contrast,
we observe that SmartMask is able to generate better quality
scene-aware masks for inserting the target object where the

or
, thereby facilitating better object insertion
performance.

B. Experiment Details

In this section, we provide further information regarding the
implementation of our approach (refer App. B.1) as well
as additional details on quantitative experiments used while
reporting results in the main paper (refer App. B.2).

B.1. Implementation details

Data Preparation for Mask-Free Insertion. The key idea
of SmartMask is to leverage semantic amodal segmentation
datasets in order to obtain high-quality paired training an-
notations for mask-free object insertion. During training,
given an image Z, with a sequence of ordered amodal se-
mantic instance maps {41, As ... A,} and corresponding
semantic object labels {01,005 ...0,}, we first compute
an intermediate layer semantic map as,

Sk = flayer({A17A2 v Ak})

where k is randomly chosen from [1, n] and fiqy., is a lay-
ering operation which stacks the amodal semantic segmen-
tation maps from ¢ € [1,%] in an ordered manner (please
refer Fig. 2 main paper) as follows,

where k € [1,n]. (1)

k
frayer (A1, Ag, ..., Ay) = @) Ai © h(O;) fori € [1,k]
i=1

where €D represents the stacking operation and h(0O;) is
the rgb encoding for the corresponding object description
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Input Image SmartMask Outputs for Mask-free Object Insertion

Figure 4. SmartMask for mask-free object insertion. We observe that unlike prior image-inpainting methods which rely on user coarse
masks for object location and scale, SmartMask also allows for mask-free object insertion. This allows the user to generate diverse object
insertion suggestions for putting the target object (e.g., s/ip) in the input image at different positions and scales. Note that the masks are
generated in a scene-aware manner, and can therefore account for the existing scene elements (e.g., man lying on bed in row-5, car riding
down the road in row-3 etc.). Also notice that the object insertion suggestions are generated at different scales: thus objects close to camera
are larger and away from camera are smaller (e.g., mortorbike parked beside a car in row-4).
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Figure 5. SmartMask for mask-free object insertion. We observe that unlike prior image-inpainting methods which rely on user coarse
masks for object location and scale, SmartMask also allows for mask-free object insertion. This allows the user to generate diverse object
insertion suggestions for putting the target object (e.g., bench in row-1, dog in row-6) in the input image at different positions and scales.
Note that the masks are generated in a scene-aware manner, and can therefore account for the existing scene elements (e.g., lamp in living
room in row-4, chair at different empty positions in row-5 etc.). Also notice that the object insertion suggestions are generated at different
scales: thus objects close to camera are larger and away from camera are smaller (e.g., c/ild near a waterfall in row-2).
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Figure 6. Analysing output mask quality. We observe that SmartBrush mask-head predictions [23] and Inpaint+HQSAM outputs (i.e.,
inpainting first and then using HQSAM [11] typically lead to coarse masks for the target object. Furthermore, the generated masks can
often have artifacts in the target regions. In contrast, SmartMask is able to generate diverse mask suggestions with more finegrain details
(e.g., women details in example-1, rree struciure in example-2) for inserting the target object in the original image.



SmartMask (Ours)

o)
&

% 8

< o

= g

3 g

2 da

c £

g g

2 o)
=
£
E

.

o}

T

+

G

=

=

3

g

w2

g

<}

=

[

=

3

£

w2

&

= 2

E o

E oQ

wn

SmartBrush + HQSAM

il

Image + Mask Target Object Mask Outputs

Figure 7. Analysing output mask quality. We observe that SmartBrush mask-head predictions [23] and Inpaint+HQSAM outputs (i.e.,
inpainting first and then using HQSAM [11] typically lead to coarse masks for the target object. Furthermore, the generated masks can
often have artifacts in the target regions. In contrast, SmartMask is able to generate diverse mask suggestions with more finegrain details
(e.g., living room chair in example-1, dog details in example-2) for inserting the target object in the original image.



Input Image + Mask

SmartBrush Inpaint

SmartBrush + HQSAM

SmartMask (Ours)

Target Scene:
A woman in a living room

Target Object for Insertion:
woman

Target Object Mask Outputs

Figure 8. Limitation of Inpaint + HQSAM. In addition to poor quality mask outputs (refer Fig. 6, 7), we observe that Inpaint+HQSAM
methods (i.e. inpainting first and then using HQSAM to obtain target object masks) can also lead to scene-unaware masks. For instance,
we observe that when inpainting the target object (i.e. wormarn) in the bounding box area, Adobe SmartBrush [23] modifies the background
to also add a chair (row-2). The use of HQSAM [1 1] on the inpainted outputs thus leads to masks which portray the woman as sitting in the
air in the original image (row-3). In contrast, we observe that SmartMask is able to generate better quality scene-aware masks for inserting
the target object where the woman is either sitting on the floor or standing in the provided mask area.

O;. The SmartMask model Dy is then trained to as input
the above computed intermediate semantic layer map Sy,
semantic label description for next object Top; — Opyi,
overall caption Teonteqt < Cz (for image Z computed us-
ing InstructBLIP [8]) and learns to predict the mask M y;
for the next object O as,

MPTEd =Dy (5¢ (S]), 7:;bj, 7-contezt)’ 2

obj
s.t. Mglt,j =5, 01— Agy1) + Ak 3)

O

where the ground-truth model output Mgz ; is modelled as
the target object mask Ay stacked on top of input map
Sy, which helps provide the model better spatial context for
target mask generation during the reverse diffusion process.

Data Adaptation for Mask Control. In addition to
mask-free object insertion, SmartMask also allows the user
to provide an additional guidance input G,; to control the
better details of the output mask. During training, this is
achieved through a simple data-adaptation strategy which



replaces input Sy, to SmartMask as,

Sk =9(Sk,Gopj) = Sk © (1 = a Gopj) + a Gopjy  (4)

where Gy, is the additional guidance input (e.g., bounding
box mask, coarse scribbles etc.) provided by the user and
a = 0.7 helps add additional guidance while still preserving
the content of the original input S}, after data adaptation.

In this paper, we mainly consider four main guidance in-
puts Gy for additional mask control while adapting Smart-
Mask. 1) Mask-free guidance: Gop; = 0H:W" which
prompts the model to suggest fine-grained masks for ob-
ject insertion at diverse positions and scales. 2) Bounding-
box guidance: we set Gp; as a binary mask corresponding
to bounding-box for target object mask Ay41. 3) Coarse
Spatial Guidance: Given bounding coordinates by1 =
{Zmin, Ymins Tmaz, Ymaz ; TOT the target object mask Ay 1,
we first compute a randomly perturbed bbox location as,

bit1 < bri1 + Pri1, where pri1 €RY ()

where pi+1 ~ U[—20,20] is sampled from a uniform dis-
tribution, and randomly perturbs the original bounding box
bj+1. The guidance input Go; is then computed by ap-
plying a Gaussian-blur operation to a binary bounding-box
mask for the perturbed bounding-box coordinates Bk+1

4) User scribbles: Finally, we also allow the user to de-
scribe target object using free-form coarse scribbles, by set-
ting Gop; as the output of multi-scale morphological dila-
tion operation applied on target object mask Ag1.

SmartMask Training. In order to leverage the rich gen-
eralizable prior of T2I diffusion models, we use the weights
from publicly available Stable-Diffusion-v1.5 model [19]
in order to initialize the weights of the SmartMask U-Net
model. Similar to [6], we modify the architecture of the U-
Net model to also condition the output mask predictions on
segmentation layout S;. The semantic object label 7,,; and
final-scene context 7 onteqt are jointly fed to the diffusion
model by modifying the input text tokens as follows,

Ttext = CLIP(%Z}]) + <sep> + CLIP(7—contemt)7 (6)

where <sep> is the separation token and CLIP(7.;),
CLIP(7context) represents the CLIP tokens for the object-
description 7,5; and scene-context Teontewt respectively.
The overall SmartMask model is then trained for a total of
100k iterations with a batch size of 192 and learning rate
le — 5 using 8 Nvidia-A100 GPUs.

SmartMask Inference. During inference, a panoptic
semantic segmentation model finetuned on the dataset in
Sec. 4 of main paper is used for converting real image 7 to
its semantic layout S;. The semantic layout Sy along with
object description and scene context are used as input to
SmartMask model followed by a thresholding operation to
obtain the target object mask. Finally, a ControlNet-Inpaint

[22, 24] model trained with SDXL backbone is used to per-
form precise object insertion with SmartMask outputs.

Global Planning Model. The global planning model
(Sec. 3.3 main paper) directly follows the visual-instruction
tuning architecture from [13]. In particular, we use the
recently proposed instruction-following vicuna-1.5 [25]
model as the large-language encoder. The feature alignment
process was performed for 5k training steps with a learning
rate of 1e — 5. The visual projector model learned from the
feature alignment step is then used for instruction-tuning
for predicting potential locations for the target object. The
instruction-finetuning process is performed for 60k training
steps with a learning rate of 1e — 6.

B.2. Quantitative Experiments

Object Insertion. In addition to qualitative results, we also
report quantitative results comparing our approach to prior
works [19] for object insertion. To this end, we first col-
lect a total of 8490 image-mask pairs where human users
are shown a real image input and asked to provide a feasi-
ble bounding box mask for inserting a target semantic ob-
ject (e.g., man, woman, dog, tree, chair efc.) in the orig-
inal image. The image-mask pairs along with the corre-
sponding object description are then used to obtain object
inpainting results for different baselines [4, 16, 19]. The
final scene context description Teonteqt for SmartMask is
obtained by appending the object description in front of
the scene-caption (obtained using InstructBLIP [&]) for the
original image. The results for Adobe Smartbrush [23] in-
cluding both in-painted outputs as well as mask-head pre-
dictions (refer Sec. A.4) are obtained directly from paper
authors. The results for Adobe GenerativeFill [1] are ob-
tained using the commercially available GenFill tool from
Adobe Firefly [1]. However, since no API for the same is
available, quantiative results for GenFill (Table 1 main pa-
per) are reported using a limited subset of 200 examples.
Output Mask Quality. We also report quantitative re-
sults on output mask quality by comparing SmartMask gen-
erated masks with SmartBrush [23] mask-head predictions
and different Inpaint+HQSAM methods (i.e. inpainting first
and then using HQSAM to obtain target object masks).
To this end, we perform a human user study where given
the input-image and object description, human subjects are
shown a pair of object-insertion mask suggestions (ours vs
baselines discussed above). For each pair, the human par-
ticipant is then asked to select the object-mask suggestion
with higher quality in terms of mask details, alignment with
object description and mask realism/artifacts. The user-
study data was performed among 50 human participants,
who were given an unlimited time in order to ensure high
quality of the final results. Additionally, in order to remove
data noise, we use a repeated comparison (control seed) for
each user. Responses of users who answer differently to this



SmartMask (Ours)

Image + Mask Adobe Generative-Fill

Output (Ours)

SmartMask Prediction

Ours + ShadowControlNet

Figure 9. Shadow depiction. We observe that shadow generation remains a challenging problem for even with most state-of-the-art image
inpainting methods (e.g., Adobe GenFill [1] (left) and Ours (right)). Nevertheless, we find that the SmartMask generated precise mask can
be used as input to a second shadow-generation ControlNet model [ 5] for better quality shadow generation for the inserted object.

repeated seed are discarded while reporting the final results.

C. Additional Related Work

Bounding-box based layout generation methods. In ad-
dition to the semantic-layout to image generation works
[5,7, 12,21, 24] discussed in Sec. 2 of the main paper, the
layout generation ability of the proposed approach can also
be contrasted with bounding-box based specialized layout
creation methods [2, 9, 10, 18, 26]. However, the generated
layouts are represented by coarse bounding-box locations.
In contrast, iterative use of the proposed SmartMask model
allows the user to control the scene layouts on a more fine-
grain level including object shape / structure, occlusion rela-
tionships, location efc. Furthermore, as illustrated in Fig. 7b
(main paper), we note that SmartMask generated layouts are
highly controllable and allow for a range of custom opera-
tions such as adding, removing, modifying or moving ob-
jects through simple layer manipulations.

Object stamp and shape generation has also been stud-
ied in the context of object insertion and semantic layout
generation. For instance, [14] propose a GAN-based ap-
proach for generating object stamps before generating their
texture for object insertion. However, the same requires
costly data collection and training a separate object-stamp
and texture generation model for each semantic class, which
can be quite time-consuming for practical applications.

D. Discussions and Limitations

While the proposed approach allows for better quality ob-
ject insertion and layout control, it still has some limita-
tions. First, recall that current SmartMask model is trained
to predict object insertion suggestions based on the seman-
tic layout Sy of the input image Z. While this allows us to
leverage large-scale semantic amodal segmentation datasets
[17, 27] for obtaining high quality paired annotations dur-
ing training, the use of semantic layout input for target mask
prediction can be also be limiting as the semantic layout Sy
typically has less depth context as opposed to the original
image Z. In future, using a ControlNet generated S2I image

as pseudo-label can help better train the model to directly
predict the target object masks from the original image Z.

Second, we note that in order to facilitate background
preservation and mask-free object insertion, the current
SmartMask model is trained on a semantic amodal segmen-
tation dataset consisting a total of 32785 diverse real world
images (with ~ 0.75M different object instances). In con-
trast, typical object inpainting models such as Adobe Smart-
Brush [23], SDInpaint [19, 22] are trained on datasets [20]
which are orders of magnitude larger in comparison (e.g.
Adobe SmartBrush [23] and SDInpaint [19] are trained on
600M samples from the LAION-Aesthetics-v2 5+ dataset
[20]). While utilizing the generalizable prior of a pretrained
Stable-Diffusion v1.5 model [22] allows our approach to
generalize across diverse semantic object categories (e.g.
mountains, building/towers, humans, dogs, cats, clouds,
trees, furniture, appliances efc.) with limited data, gener-
ating precise object masks for out-of-distribution semantic
object labels e.g., dragons, tigers efc. remains challenging.
In future, the use of larger training datasets and stronger
prior model (SDXL [16]) can help alleviate this problem.

Finally, we note that similar to prior inpainting methods
[1, 16, 19, 23], accurate shadow-generation around the in-
serted object remains a challenging problem. For instance,
in Fig. 9, when adding a man in front of a house on a sunny
day, we observe that both Adobe GenFill [1] and Smart-
Mask lead to limited shadow depiction around the inserted
object. Nevertheless, we find that the SmartMask gener-
ated precise mask can be used as input to a second shadow-
generation ControlNet model [ 1 5] for better quality shadow
generation for the inserted object. That said, we note that
precise shadow generation for the inserted object remains a
challenging problem (with both prior work and ours). How-
ever, the same is out of scope of this paper, and we leave it
as a direction for future research.
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