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1. Contents of the supplementary materials
In this supplementary document, we present detailed information and further experimental results, including:

1. Dataset Splits for ODG Settings: Table 1 lists the dataset splits for PACS, VLCS, OfficeHome, DigitDG, Multi-
Dataset, and Mini-DomainNet.

2. Extended Literature Survey on Prompt Learning: An expanded review of prompt learning in CLIP is available in
Section 3.

3. Implementation Details of Competitors: Section 4 elaborates on how competitor models were implemented.

4. Analysis of Fréchet Distance: In Table 2, we analyze the Fréchet distance [9] between each source and target domain
in the PACS dataset to evaluate domain alignment.

5. Model Complexity Comparison (GFLOPS): Figure 1 compares different models based on their GFLOPS calculation
during training.

6. Ablation Studies: These include an examination of the domain token position in prompts (Table 3), context length for
prompts (Table 4), and cosine-similarity of x̂ features for pseudo-unknown-class samples across domains (Table 5).

7. Qualitative Analysis: Figure 2 highlights the effect of utilizing negative prompts for creating pseudo-open images.
Additionally, Figure 3 presents a t-SNE visualization, contrasting our method’s latent visual space representation with
the traditional hand-crafted x̂ for class embeddings. Furthermore, Figure 4 offers a comparative analysis of open
samples generated by Cumix [30], OpenGAN [23], and our diffusion model [38] within the embedding space.

8. Model Ablation Results: Table 6 shows results for ODG-CLIP using ViT/B-16 and ResNet-50-based CLIP visual
encoders.

9. Extended Results with Unknown-Class Prompts: Table 7 extends the (model+SD) results from Table 1 in the main
paper.

10. ODG Results on Full DomainNet: Table 8 provides detailed results and comparisons for the full DomainNet dataset
[34].

11. Individual Domain Combination Results: Detailed results for individual domain combinations of open and closed-
set DG, supplementing Tables 1 and 2 in the main paper, are presented in Tables 9 through 16.
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2. Datasets descriptions
Office-Home Dataset [45]: Comprising 15,500 images, this dataset is divided into 65 classes across four domains: Art,

Clipart, Product, and Real. PACS Dataset [27]: The PACS dataset includes 9,991 images, categorized into seven classes and
spread over four domains: Artpaint, Cartoon, Sketch, and Photo. VLCS Dataset [11]: This dataset amalgamates images from
four classification datasets (PASCAL VOC 2007 [10], Caltech [12], LabelMe [39], Sun [48]) and consists of images across
five classes: Bird, Car, Chair, Dog, and Person. Digits-DG Dataset [52]: Digits-DG is an aggregation of several handwritten
digit recognition datasets, including MNIST [24], MNIST-M [13], SVHN [31], and SYN [13]. Multi-dataset [42]: This
dataset combines various public datasets such as Office-31 [40], STL-10 [8], and Visda2017 [35], including four domains
from DomainNet [34]. It features 20 open classes not present in the source domains’ joint label set. Mini-domainnet [34]:
This dataset features four domains, each comprising images from 125 categories. Domainnet [34]: Comprising six domains,
this dataset includes images from 345 categories. The class splits for all five datasets used in ODG are detailed in Table 1,
with classes arranged in alphabetical order.

Table 1. Dataset splits for the ODG settings: PACS, VLCS, OfficeHome (O.H.), DigitDG (D-DG), Multi-dataset(M.Data), Mini-
DomainNet (M.DNet) and DomainNet datasets.

Domain PACS VLCS OfficeHome Digits-DG Multi-Datasets Mini-DomainNet DomainNet

Source 1 3, 0, 1 0, 1 0 - 14,21 - 31 0, 1, 2 0 - 30 0 - 19, 40 - 59 0 - 19, 30 - 59, 70 - 99

Source 2 4, 0, 2 1, 2 0 - 8, 15 - 20, 2, 3, 4 1, 31 - 41 0 - 9, 20 - 39, 10 - 49, 90 - 129
32 - 42 80 - 89

Source 3 5, 1, 2 2, 3 0 - 2, 9 - 20, 4, 5, 6 31, 33, 34, 10 - 19, 40 - 49, 60 - 79, 140 - 164
43 - 53 41 - 47 60 - 79 180 - 194, 210 - 229

Source 4 - - - - - - 130 - 139, 160 - 184,
195 - 219, 250 - 269

Source 5 - - - - - - 20 - 39, 220 - 249, 270 - 299

0, 3 - 4, 9 - 10, 0, 1, 5, 6, 10, 11, 0 - 4, 8- 17, 0 - 9, 70 - 79
Target 0-6 0-4 15 - 16, 21 - 23, 0-9 14, 17, 20, 26, 25 - 34, 43 - 47, 120 - 129, 180 - 189

32 - 34, 43 - 45, 31 - 36, 39 - 43, 75 - 79, 83 - 87, 230 - 239, 280 - 289
54 - 64 45 - 46, 48 - 67 90 - 125 300 - 344

3. Extended literature survey of prompt learning using CLIP
Vision-Language Models (VLMs) have garnered significant interest across language processing and computer vision fields

[3, 5, 16, 25, 37, 43, 44]. These models typically employ task-specific textual descriptions to interpret and analyze visual
data [17, 19]. While early prompting strategies relied on manual definitions, more recent developments have shifted towards
automated prompt learning. CoOp [51] introduces an approach to optimize both unified and class-specific prompts via back-
propagation. CoCoOp [50] further expands on CoOp by incorporating input-conditioned prompt learning, thus addressing
issues related to generalization. The CLIP-adapter [15] innovates by fine-tuning feature adapters within both the visual
and language branches of the model. ProGrad [54] is designed to prevent the forgetting of foundational knowledge within
these models. TPT [41] leverages the consistency between multiple views of an image for supervision. Probabilistic and
variational models such as Prod [28] and Varprompt [29] focus on learning prompt distributions that align with the spread
of visual features. LASP [6] enhances the quality of learned prompts through a text-to-text cross-entropy loss. Meanwhile,
MaPLe [21] works on improving the compatibility between different levels of CLIP encoders. However, a notable limitation
of these approaches is their lack of specialization in handling multi-domain data, a crucial aspect for broader applicability in
diverse real-world scenarios.

In the realm of domain generalization, several researchers have investigated the concept of domain invariant prompts.
For instance, [32] and [26] focus on harnessing text-based source domain knowledge or utilizing image patches as prompt
inputs in Vision Transformer (ViT) models. This approach is akin to the methodology used in VPT [20], where prompts
are adapted based on specific image features, aiming to achieve a more domain-agnostic model performance. DPL [49]
employs CLIP [36] for multi-source Domain Generalization (DG) by deducing domain information from visual features on



a batch-wise basis. However, DPL does not fully exploit CLIP’s capability to discern domain-specific details. Additionally,
it is prone to overfitting when dealing with small batches, as accurately estimating unbiased style characteristics becomes
challenging.

As can be observed, our prompt learning technique stands out from all the previous literature.

4. Additional implementation details of the competitor models
In the CLIP+OpenMax configuration, we have developed a C + 1-class, threshold-free classifier using CLIP features to

form a unified classifier. For the CLIP+OSDA variant, we incorporate a trainable linear layer on top of the pre-trained CLIP
features, which acts as the generator. This is complemented by distinct discriminators for both source-specific classification
and domain alignment. The adversarial aspect of this setup is implemented through a gradient-reversal layer, following the
methodology outlined in [14].

Regarding other prompt learning techniques, our implementation is faithful to the procedures described in the original
works. For the CLIPN+STYLIP model, we divide the tokens into two separate categories. One category is shaped by the
token learning strategy of STYLIP, and the other consists of specialized tokens that are modified in line with CLIPN’s frame-
work. This bifurcated token strategy effectively combines the strengths of both STYLIP and CLIPN, ensuring a harmonious
and potent integration of these methodologies.

5. Analysis of domain alignment using the Fréchet distance [9]
Table 2 presents the source-to-target domain alignment in various PACS dataset combinations, using the Fréchet distance

as a metric. A lower Fréchet distance denotes better domain alignment. In these evaluations, ODG-CLIP demonstrates
significant superiority over two main competitors: DAML [42], employing a traditional CNN backbone, and the combined
model of CLIPN + STYLIP, using baseline CLIP [36] features. This advantage of ODG-CLIP is evidenced by its smaller
Fréchet distances, indicating more effective domain alignment. Additionally, the impact of excluding the consistency loss
Lsem from ODG-CLIP is shown, revealing a decrease in alignment quality compared to the complete ODG-CLIP model.

Table 2. Ablation study on Fréchet distance between each of the source and target domains on PACS dataset using the visual features for
domain alignment.

Methods Cr→Ar Ph→Ar Sk→Ar Ar→Cr Ph→Cr Sk→Cr Ar→Ph Cr→Ph Sk→Ph Ar→Sk Cr→Sk Ph→Sk

DAML [42] 256.41 278.35 224.13 235.89 240.14 197.34 301.56 296.31 283.27 200.37 178.92 235.28
CLIP [36] 231.43 217.75 230.32 224.51 234.17 207.21 267.56 275.32 258.48 160.31 180.46 218.35
CLIPN [46] + StyLIP [4] 200.67 195.70 180.35 198.21 204.21 180.25 247.89 263.19 240.38 149.39 160.86 198.37

ODG-CLIP w/o Lsem 140.22 135.68 120.75 105.43 145.90 125.22 187.33 189.45 178.88 121.22 142.67 150.40
ODG-CLIP 112.56 120.48 95.26 87.32 103.78 105.47 140.26 132.58 146.52 105.37 124.50 131.41

6. Comparison of model complexity for different CLIP based techniques for ODG
In Fig. 1, we present a comparison of the model complexity of ODG-CLIP with its competitors. ODG-CLIP exhibits a

level of complexity that is on par with most other models, yet it notably surpasses more complex alternatives like STYLIP +
SD or CLIPN by a considerable margin. Importantly, when it comes to the H-Score, a key metric of performance, ODG-CLIP
consistently outperforms all its counterparts, demonstrating its efficacy despite having comparable complexity.

7. Additional ablation studies
Position of the dom token in the prompts: In Table 3, we present an ablation study that varies the position of domain tokens
in Pdom,class and Pdom, demonstrated across four datasets.
Sensitivity of ODG-CLIP to the context lengths of the prompts: Table 4 illustrates how ODG-CLIP’s performance is
affected by the context length in both Pdom,cls and Pdom. Generally, a context length of four yields the best outcomes,
though a length of 16 also shows comparable results in most cases.
Cosine similarity measurements of latent features x̂ for pseudo-unknown class images: Building on the findings pre-
sented in Fig. 3 (Top) of the main paper, where we explored the impact of Lsem on the cosine similarity of the x̂ tensor for



Figure 1. GFLOPs comparison of different methods.

Table 3. Ablation on the position of the domain tokens in the prompts.

position PACS O.H. M.Data M.DNet

Acc H Acc H Acc H Acc H

front 99.53 99.70 98.32 96.08 84.60 90.00 95.68 94.48
middle 98.40 98.35 98.15 96.08 84.63 90.08 95.51 93.87

end 99.53 99.70 98.27 96.08 84.63 90.00 95.68 94.48

Table 4. Ablation on context lengths. (M, N ) depicts the context length of Pdom,cls and Pdom. We consider the case when Art serves as
the target domain in Office-Home.

token length (4,4) (4,28) (8,24) (12,20) (16,16) (20,12) (24,8) (28,4)

H-score 95.88 93.78 94.80 94.80 95.88 92.83 92.81 91.81

closed classes, Table 5 extends this analysis by demonstrating the effects of Lsem on the x̂ information for pseudo-unknown
images.

Table 5. Cosine similarity in terms of x̂ features with and without Lsem for the unknown-class samples averaged over all the domains.

Configuration PACS VLCS Office-Home M-Dataset M-DomainNet
With Lsem 0.81 0.82 0.76 0.78 0.79
Without Lsem 0.31 0.30 0.32 0.37 0.35



8. Qualitative analysis
Effects of NP prompts for pseudo-open image generation: In Fig. 2, we note that using only the positive prompt, stable
diffusion continues to produce images of known classes. For instance, in the PACS dataset, a positive prompt (PP) repeatedly
generates images of ’Person’ and ’Guitar’, which are inlier classes.

Figure 2. Images generated with only positive prompts vs. both the positive and negative prompts together by stable diffusion.

Analysis of the generated visual latent space: Figure 3 demonstrates that our method for generating x̃ provides greater
discriminability compared to manually defining x̂ from static class embeddings.

{domain ; class} - {domain} prompt only {class} prompt

Figure 3. t-SNE of pseudo-open and closed image features produced using a manual x̂ and by our proposed approach in ODG-CLIP.

t-SNE of open images produced by different methods: In Figure 4, we show the t-SNE plots of the CLIP features of the
pseudo-open images produced by CuMix, OpenGAN, and the stable diffusion model, which clearly shows that the diffusion
based model can better cover the open space.

9. Model ablation analysis
Table 6 presents the performance outcomes of ODG-CLIP using various CLIP visual encoders.



Cumix OpenGAN ODG-CLIP

Figure 4. t-SNE of pseudo-open image features produced by Cumix, OpenGAN and ODG-CLIP.

Table 6. Ablation with ResNet-50 and ViT/B-16 based CLIP encoders.

Methods PACS VLCS OfficeHome Digits-DG Multi-Dataset Mini DomainNet Average

Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

RN-50 94.30 90.76 88.21 79.36 91.13 88.28 89.76 72.50 75.15 70.27 88.70 84.34 87.88 80.92
ViT-B/16 98.64 97.23 94.95 86.24 97.85 95.73 91.44 77.85 82.38 87.62 94.50 94.11 93.29 89.80

VIT-B/32 99.53 99.70 95.71 86.53 98.32 96.08 91.53 78.27 84.60 90.00 95.68 94.48 94.23 90.84

10. Additional results of using unknown-class prompts into existing models
In Table 7, we show further comparisons to the existing prompting techniques, equipped with the unknown-class prompts

for the open samples, where the stable-diffusion model [38] was used to generate the training pseudo-open images for this
prompt.

Table 7. Extended comparisons with respect to the prompting techniques coupled with the unknown-class prompts.

Methods PACS VLCS OfficeHome Digits-DG Multi-Dataset Mini DomainNet Average

Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

CoOp [51] + SD [38] 92.53 79.27 92.24 70.52 84.63 75.34 80.36 62.78 78.10 71.48 83.25 78.55 85.19 72.99
CoCoOp [50] + SD [38] 92.65 81.45 92.51 72.00 82.35 79.53 80.58 62.95 78.24 73.29 83.50 78.93 84.97 74.69
MaPLe [21] + SD [38] 91.47 82.60 91.70 72.67 85.02 80.60 79.92 65.82 77.62 72.83 83.79 79.30 84.92 75.64
LASP [6] + SD [38] 90.32 82.44 90.37 71.19 81.56 80.42 80.55 62.50 75.89 70.04 82.82 79.46 83.59 74.34
PromptSRC [22] + SD [38] 93.21 87.95 90.34 72.62 84.60 83.31 80.92 65.37 78.44 77.89 83.87 82.95 85.23 78.35
STYLIP [4] + SD [38] 91.78 87.42 92.11 73.34 85.51 81.22 81.45 68.10 79.05 78.52 84.12 83.21 85.67 78.64

ODG-CLIP 99.53 99.70 95.71 86.53 98.32 96.08 91.53 78.27 84.60 90.00 95.68 94.48 94.23±0.19 90.84±0.26

11. ODG results on full DomainNet
In Table 8, we show the ODG results on the full DomainNet dataset for all the domain combinations. The dataset splits

are mentioned in Table 1.

12. Complete results on the all the datasets for ODG and closed-set DG
Please refer to Tables 9-14 for the detailed ODG results and Table 15-16 for the closed-set DG results, respectively.
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Table 11. Comparative analysis for Office-Home in ODG setting on average Acc and H-score over all the domain combinations following
leave-one-domain-out protocol.
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Table 12. Comparative analysis for Digits-DG in ODG setting on average Acc and H-score over all the domain combinations following
leave-one-domain-out protocol.
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Table 13. Comparative analysis for Multi Dataset in ODG setting on average Acc and H-score over all the domain combinations following
leave-one-domain-out protocol.
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Table 14. Comparative analysis for Mini-DomainNet in ODG setting on average Acc and H-score over all the domain combinations
following leave-one-domain-out protocol.

Methods Clipart Real Painting Sketch Average

Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

C
N

N
-b

as
ed Cumix [30] 46.48 30.50 62.13 53.58 54.02 47.54 38.46 25.00 50.27 39.16

MixStyle [53] 46.59 31.39 63.56 55.69 55.15 48.45 36.42 25.45 50.43 40.25
DAML [42] 47.39 36.21 67.37 58.21 60.37 50.58 36.11 29.52 52.81 43.63
MEDIC [47] 51.98 38.36 67.53 60.12 65.32 51.78 36.32 32.56 55.29 45.71

C
L

IP
-b

as
ed

CLIP [36] 88.00 69.35 90.50 68.84 80.00 66.72 79.50 70.85 84.50 68.94
CLIP + OpenMax [2] 85.36 71.47 89.44 67.47 77.20 68.21 75.56 70.46 81.89 69.40
CLIP + OSDA [33] 86.32 76.32 88.57 70.31 81.34 74.59 71.77 73.25 82.00 73.62
CoOp [51] 64.50 75.53 75.00 77.68 57.50 70.70 47.50 49.50 61.13 68.35
CoCoOp [50] 47.50 51.68 76.50 68.63 58.50 57.28 60.00 47.59 60.63 56.30
MaPLe [21] 86.00 61.47 86.67 51.39 74.67 76.22 51.33 53.20 74.67 60.57
LASP [6] 49.21 63.13 78.34 65.36 60.28 63.23 61.52 54.52 62.34 61.56
PromptSRC [22] 87.33 63.28 87.17 65.06 67.60 67.56 52.30 54.35 73.60 62.56
CLIPN [46] 88.64 66.21 88.35 70.32 73.24 71.02 59.28 60.14 77.38 66.92
STYLIP [4] 89.18 68.93 89.84 74.27 76.69 71.58 65.15 61.66 80.22 69.11
CLIPN + STYLIP 88.67 70.48 88.39 80.32 85.34 77.40 83.97 76.50 86.59 76.18
MaPLe + SD 88.73 78.50 85.60 78.47 80.60 79.80 80.22 80.43 83.79 79.30
PromptSRC + SD 89.03 80.29 86.04 84.96 80.11 82.35 80.30 84.21 83.87 82.95
STYLIP + SD 89.67 83.13 86.39 85.12 80.20 83.04 80.23 81.53 84.12 83.21

ODG-CLIP 97.55 94.50 96.40 95.60 95.33 95.45 93.44 92.35 95.68 94.48

Table 15. Comparative analysis for PACS, VLCS and Office-Home in closed-set setting over all the domain combinations following
leave-one-domain-out protocol.

Methods PACS VLCS Office-Home

Art Cartoon Photo Sketch Avg Caltech LabelMe Sun P-VOC Avg Art Clipart Product R-World Avg

C
N

N SWAD [7] 89.3 83.4 97.3 82.5 88.1 98.8 63.3 75.3 79.2 79.1 66.1 57.7 78.4 80.2 70.6
EoA [1] 90.5 83.4 98.0 82.5 88.6 99.1 63.1 75.9 78.3 79.1 69.1 59.8 79.5 81.5 72.5
DandelionNet [18] 87.8 86.5 96.8 85.8 89.2 99.1 70.2 77.2 80.0 81.6 65.8 58.6 78.0 79.7 70.5

C
L

IP
-b
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ed

CLIP [36] 96.21 98.07 98.65 86.62 94.89 98.73 69.05 82.56 78.23 82.14 74.58 67.94 84.85 86.21 78.40
CoOp [51] 97.85 98.64 99.70 92.23 97.11 98.58 70.20 84.28 80.31 83.34 77.32 72.10 88.43 87.46 81.33
CoCoOp [50] 97.42 98.18 99.54 91.02 96.54 98.93 73.18 85.21 82.76 85.02 77.45 72.03 87.92 86.81 81.05
MaPLe [21] 98.84 98.90 99.75 93.40 97.72 99.12 75.66 86.43 85.80 86.75 78.50 76.23 89.95 89.40 83.52
LASP [6] 98.10 98.34 99.27 92.35 97.02 99.45 76.54 86.98 86.02 87.25 79.24 76.75 90.14 90.37 84.13
PromptSRC [22] 98.79 99.02 99.50 94.76 98.02 99.61 75.30 85.39 85.07 86.34 78.97 75.82 90.31 90.44 83.89
STYLIP [4] 98.73 99.15 99.97 94.82 98.17 99.70 75.84 87.08 86.22 87.21 81.54 78.78 91.67 91.75 85.94

ODG-CLIP 99.93 99.87 100.00 99.51 99.83 100.00 92.63 95.71 94.60 95.74 96.38 92.35 99.52 99.37 96.91

Table 16. Comparative analysis for Digits-DG and Mini-DomainNet in closed-set setting over all the domain combinations following
leave-one-domain-out protocol.

Methods Digits-DG Mini-DomainNet

MNIST MNIST-M SVHN SYN Average Clipart Real Painting Sketch Average

CLIP [36] 83.48 58.41 46.64 69.82 64.59 85.25 66.84 95.13 67.71 78.73
CoOp [51] 93.11 71.32 61.28 82.73 77.11 82.49 61.34 92.94 64.42 75.30
CoCoOp [50] 93.56 74.90 64.51 84.45 79.36 77.38 59.75 88.57 60.34 71.51
MaPLe [21] 94.25 75.68 66.72 84.33 80.25 81.27 62.58 88.29 63.32 73.87
LASP [6] 95.87 75.61 65.91 82.28 79.92 80.51 58.30 85.14 58.72 70.67
PromptSRC [22] 96.24 78.94 68.04 86.36 82.40 87.63 62.45 89.52 64.80 76.10
STYLIP [4] 96.39 78.53 66.35 85.20 81.62 89.36 67.63 94.57 70.14 80.43

ODG-CLIP 99.48 96.38 91.22 98.42 96.38 98.54 92.37 99.42 96.25 96.65

2023. 10
[19] Dat Huynh and Ehsan Elhamifar. Fine-grained generalized zero-shot learning via dense attribute-based attention. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, pages 4483–4493, 2020. 2
[20] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual prompt

tuning. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXIII, pages 709–727. Springer, 2022. 2



[21] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz Khan. Maple: Multi-modal
prompt learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 19113–
19122, June 2023. 2, 6, 7, 8, 9, 10

[22] Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Self-
regulating prompts: Foundational model adaptation without forgetting. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15190–15200, 2023. 6, 7, 8, 9, 10

[23] Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 813–822, 2021. 1
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