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1. Implementation and training details

Hairstyle diffusion model. For conditional diffu-
sion model, we use the U-Net architecture from [13]
with the following parameters: image size = 32 ×
32, input channels = 64, num res blocks = 2,
num heads = 8, attention resolutions = (4, 2, 1),
channel mult = (1, 2, 4, 4), model channels = 320,
use spatial transformer = True, context dim = 768,
legacy = False.

Our training pipeline uses the EDM [5] library and
we optimize the loss function using AdamW [10] with
learning rate = 10−4, β = [0.95, 0.999], ϵ = 10−6,
batch size = 8, and weight decay = 10−3.

List of prompts. Below we include the list of prompts used
during data annotation using a VQA model. After each of
the prompts, we add ‘If you are not sure say it honestly. Do
not imagine any contents that are not in the image. After the
answer please clear your history.’ to the input.

• ‘Describe in detail the bang/fringe of depicted hairstyle including its
directionality, texture, and coverage of face?’

• ‘What is the overall hairstyle depicted in the image?’
• ‘Does the depicted hairstyle longer than the shoulders or shorter than

the shoulders?’
• ‘Does the depicted hairstyle have a short bang or long bang or no bang

from frontal view?’
• ‘Does the hairstyle have a straight bang or Baby Bangs or Arched Bangs

or Asymmetrical Bangs or Pin-Up Bangs or Choppy Bangs or curtain
bang or side swept bang or no bang?’

• ‘Are there any afro features in the hairstyle or no afro features?’
• ‘Is the length of the hairstyle shorter than the middle of the neck or

longer than the middle of the neck?’
• ‘What are the main geometry features of the depicted hairstyle?’
• ‘What is the overall shape of the depicted hairstyle?’
• ‘Is the hair short, medium, or long in terms of length?’
• ‘What is the type of depicted hairstyle?’
• ‘What is the length of hairstyle relative to the human body?’
• ‘Describe the texture and pattern of hair in the image.’
• ‘What is the texture of depicted hairstyle?’
• ‘Does the depicted hairstyle is straight or wavy or curly or kinky?’
• ‘Can you describe the overall flow and directionality of strands?’
• ‘Could you describe the bang of depicted hairstyle including its direc-

tionality and texture?’

Figure 1. Dataset. Hairstyles used during training (row 1) and
upsampled versions (row 2).

• ‘Describe the main geometric features of the hairstyle depicted in the
image.’

• ‘Is the length of a hairstyle buzz cut, pixie, ear length, chin length, neck
length, shoulder length, armpit length or mid-back length?’

• ‘Describe actors with similar hairstyle type.’
• ‘Does the hairstyle cover any parts of the face? Write which exact parts.’
• ‘In what ways is this hairstyle a blend or combination of other popular

hairstyles?’
• ‘Could you provide the closest types of hairstyles from which this one

could be blended?’
• ‘How adaptable is this hairstyle for various occasions (casual, formal,

athletic)?’
• ‘How is this hairstyle perceived in different social or professional set-

tings?’
• ‘Are there historical figures who were iconic for wearing this hairstyle?’
• ‘Could you describe the partition of this hairstyle if it is visible?’

Text-based models. For the VQA, we found that
“LLaVA-v1.5” model [8, 9] produces the best text de-
scriptions with a relatively low hallucination rate. In Ta-
ble 1, we experimented with different text encoder mod-
els. We used “ViT-L/14” configuration for CLIP [12] and
“blip feature extractor” from [6] library for BLIP [7]. In the
ablation experiment, we compare its result with an optimiz-
able Transformer [14] build on top of the pre-trained BERT-
Tokenizer [2] from the transformers [15] library with con-
figuration “bert-base-uncased”. For the Transformer net-
work, we use BERTEmbedder from [13] with n layer = 6,
max seq len = 256, n embed = 640.

Dataset. We provide several examples of the dataset
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Prompt: “bob hairstyle with long bang”

Prompt: “A woman with curly short hairstyle”

Prompt: “A woman with shoulder-length wavy hair”

Prompt: “Bob hairstyle with afro features”
TECA Ours

Figure 2. Comparison. Extended comparison with TECA. Our method produces higher quality samples with greater diversity than ones
generated in TECA, and our representation allows the animation of the hair in a physics simulator.

samples used during training and the upsampled versions,
see Figure 1.

2. Additional Ablations and Results

Qualitative comparison. We show an extended compari-
son with TECA [16] with more complex prompts that show
the compositional abilities of the models (see Figure 2).
Importance of classifier-free-guidance. To improve the
sample quality of the conditional model, we use classifier-
free-guidance [4]. During training, we optimize conditional
and unconditional models at the same time, by using text
embedding with zeros in 10% of cases. During inference,
we fix the random seed and show changes in sample qual-
ity, sweeping over the guidance strength w. As we can see
in Figure 4, higher weights improve the strength of condi-
tional prompts, but increasing it too much leads to out-of-
distribution samples with a high degree of inter-head pene-
trations. In our experiments, we fix the guidance weight to
w = 1.5.
Architecture of text encoder. The quality of the condi-
tional diffusion model for hairstyle generation is highly de-
pendent on the quality of the text encoder network τ(·).
We ablate the performance of the conditional generation
using pre-trained and frozen encoders, such as CLIP [12],

Text encoder CLIP BLIP Transf. Reference
CSIM 0.174 0.189 0.172 0.206

Table 1. Conditioning. Ablation on different conditioning
schemes. With BLIP text encoder, we obtain better conditioning
compared to CLIP and trainable Transformer network.

Figure 3. Upsampling. Results of upsampling in latent space (left
image) compared to upsampling in 3D space (right image) with
our final interpolation scheme. Digital zoom-in is recommended.

BLIP [7] as well as a trained transformer network [14] im-
plemented on top of a pre-trained BertTokenizer [2].

The intuition behind training additional networks for text
encoding is that the quality of pre-trained encoders may
be limited for a particular task (for example some specific
hairstyle types), which results in wrong correlations be-
tween words and deteriorates the quality of the diffusion
model.

Table 1 shows that the BLIP text encoder provides the



w = 0 0.5 0.8 1. 1.2 1.5 2. w = 2.5

Figure 4. Classifier-free guidance. Quality of samples during changing the guidance weight w from 0 to 2.5. Weight w = 0 corresponds
to unconditional generation, while w = 1 - to conditional. For w > 1 we obtain over-conditioned results. In our experiments, we fix
w = 1.5, as higher weights lead to more penetrations and reduced realism. The first four rows correspond to generation samples for the
prompt “voluminous straight hair” with two different random seeds, while the last four - for “wavy long hair”.

most effective conditioning. To show the upper-bound qual-
ity of this metric (denoted as Reference), we calculate the
CSIM on our ground-truth dataset with prompts obtained
via VQA.

Hairstyle interpolation. We linearly interpolate between
two text prompts P1 and P2 by conditioning the diffu-
sion model Dθ on a linear combination of text embeddings
(1 − α)τ(P1) + ατ(P2), where α ∈ [0, 1], and τ is the
text encoder. For interpolation results obtained for differ-
ent prompt pairs that differ in length and texture please see
Figure 5. One can notice that the interpolation between two
types of textures, e.g. “wavy” and “straight” usually starts
appearing for α close to 0.5, while length reduction takes
many fewer interpolation steps.

Hairstyle editing. For optimization eopt, we do 1500
steps with the optimizer Adam with a learning rate of

10−3. For diffusion fine-tuning, we do 600 steps with op-
timizer AdamW [10] with a learning rate of 10−4, β =
[0.95, 0.999], ϵ = 10−6, and weight decay 10−3. Both
stages are optimized using the same reconstruction loss
used during the training of the main model. The entire edit-
ing pipeline takes around six minutes on a single NVIDIA
A100. See Figure 6 for more editing results with and with-
out fine-tuning.

Upsampling scheme. We provide more results on the dif-
ferent upsampling schemes for “long straight” and “long
wavy” hairstyles (see Figure 7). While Blender [1] inter-
polation in 3D space produces either results with a high
level of penetration (bilinear upsampling) or very structured
(Nearest Neighbour) hairstyles, we are able to easily blend
between two types in latent space, combining the best from
the two schemes. Adding noise helps eliminate the grid



Input Interpolated hairstyles Input

“short straight hair” “short curly hair”

“long wavy hair” “short straight hair”

“long wavy” “long straight”

“wavy bob” “man haircut”

“casual woman” “short haircut”

“bob hairstyle” “buzz cut”

Figure 5. Hairstyle interpolation. Linear interpolation between two given textual prompts.

structure inherited from the nearest neighbor sampling and,
thus, improves realism. For noising the latent space, we
calculate a standard deviation Z̃σ ∈ R1×1×M of latent map
after interpolation Z̃ ∈ RN×N×M , where N is a grid res-
olution and M = 64 is the dimension of latent vector that
encodes the entire hair strand. The final noised latent map
is Z̃ = Z̃ + Z̃σ ⊙X ⊙ Y , where X ∈ RN×N×1 with ele-

ments xijk ∼ N (0.15, 0.05), Y ∈ RN×N×1 with elements
yijk = 2qijk−1, where qijk ∼ Bernoulli(0.5). In such
a way, we independently add some small random noise to
each latent vector on the mesh grid.

Also, we add results on 3D hairstyle interpolation with
our upsampling scheme. In Figure 3 we show our up-
sampling procedure with blending Bilinear and Nearest



Input Image eopt 0.125 0.25 0.375 0.5 0.625 0.75 0.875 “Short hair”

Input Image eopt 0.125 0.25 0.375 0.5 0.625 0.75 0.875 “Straight long”

Figure 6. Hairstyle editing. Extended editing results of our model. In each section of four images, we provide editing results without
additionally tuning the diffusion model (first two rows) and with it (second two rows). Finetuning the diffusion model results in smoother
editing and better preservation of input hairstyle.

schemes for strands in 3D space. We found that interpo-
lation in latent space leads to more realistic results.

Generalization capabilities. Our conditional diffusion
model can distinguish between different texture types,
lengths, bangs, and some popular hairstyles, like the bob,
and afro. It models the correlation between gender and
hairstyle length, but at the same time, the capacity of the
model is limited by the accuracy of the VQA and text en-
coder system. Asking more general questions improves the
generalization quality, but the answers may be less accu-
rate and lead to additional noise during training. To test
the generalization capabilities of our model, we evaluate
it on out-of-distribution prompts and attempt to generate
hairstyles of particular celebrities. We use ChatGPT [11]
to describe the hairstyle type of a particular celebrity and
use the resulting prompt for conditioning. To our surprise,
we find that even given the limited diversity of the hairstyles
seen during training, our model can reproduce the general
shape of the hairstyle. We show results illustrating the
generalization capabilities of our model by reconstructing
celebrity hairstyles for “Cameron Diaz” and “Tom Cruise”
(see Figure 8). Between different random seeds hairstyles
preserve the main features, like waviness and length, but

could change the bang style.
Finally, we show the results of our conditional model

on different hairstyle types, by conditioning the model on
hairstyle descriptions from [11] (see Figure 9).
Simulations. The hairstyles generated by our diffusion
model are further interpolated to resolution 512 × 512 and
then imported into the Unreal Engine [3] as a hair card.
We tested simulations in two scenarios: integration into a
realistic game environment with manual character control
as well as simple rotation movements for different types of
hairstyles. The realism of simulations highly depends on
the physical characteristics of hair, e.g. friction, stiffness,
damping, mass, elasticity, resistance, and collision detec-
tion inside the computer graphics engine. An interesting
research direction for future work may include the predic-
tion of individual physical properties for each hairstyle that
could further simplify the artists’ work. For simulation re-
sults, please refer to the supplemental video.



Blender (nearest) Blender (bilinear) Ours (nearest) Ours (bilinear) Ours Ours w/ noise

Figure 7. Upsampling. Extended results on hairstyle interpolation between guiding strands obtained using different schemes. For better
visual comparison, we interpolate hairstyles to around 15,000 strands and additionally visualize guiding strands (shown in dark color) for
Ours methods with interpolation in latent space. Our final method with additional noise improves the realism of hairstyles by removing the
grid-like artifacts.

Figure 8. Generalization. Hairstyles generated for celebrities “Cameron Diaz” (first two rows) and “Tom Cruise” (last two rows) using
descriptions from [11]. Several variations of hairstyles with corresponding guiding strands are generated for each celebrity.



“Long Layered Waves” “Long Shag” “Hawk Fade” “Layered Hair” “Long Layers”

“Cropped Curl” “Voluminous Curls” “Blowout” “Pixie Cut” “Layered Bob”

“Pinup Style” “Shaggy Bob” “Straight Lob” “Afro” “Side Part”

“French Crop” “Curtain Bangs” “Bowl Cut” “Spiky Hair” “Wavy Hair”

Figure 9. Conditional generation. Random samples generated for input prompts with classifier-guidance weight w = 1.5.
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