
Hierarchical Patch Diffusion Models for High-Resolution Video Generation

Supplementary Material

A. Limitations

Although our model provides considerable improvements
in video generation quality and enjoys a convenient end-to-
end design, it still suffers from some limitations.
Stitching artifacts. Despite using overlapped inference,
our model occasionally exhibits stitching artifacts. We il-
lustrate these issues in Fig. 7 (left). Inference strategies with
stronger spatial communication, like classifier guidance [9],
should be employed to mitigate them.
Error propagation. Since our model generally follows the
cascaded pipeline [19, 23, 28, 43] (with the difference that
we train jointly and more efficiently), it suffers from the
typical cascade drawback: the errors made in earlier stages
of the pyramid are propagated to the next. The error propa-
gation artifacts are illustrated in Fig. 7 (left).
Dead pixels. By “dead pixels” artifacts we imply failures
of the ViT [10]-like pixel tokenization/detokenization pro-
cedure, where the model sometimes produces broken 4⇥ 4
patches. They are illustrated in Fig. 7. These artifacts are
unique to RINs [27] and we have not experienced them in
our preliminary experiments with UNets [9, 29]. However,
since they do not appear catastrophically often, we chose to
continue to experiment with RINs.
Slow inference. Patch-wise inference requires more func-
tion evaluations at test time, which slows down the in-
ference process. For our exponentially growing pyramid
starting at 8 ⇥ 36 ⇥ 64 and ending at 64 ⇥ 288 ⇥ 512,
with full (i.e., maximal) overlapping, we need to produce
(2 · 64

8 � 1) ⇥ (2 · 288
36 � 1) ⇥ (2 512

64 � 1) = 3375 patches
for a single reverse diffusion step (see Sec. 4.4 for calcu-
lation details). Adaptive computation with caching greatly
accelerates this process, but it is still heavy.

stitching artifacts & error propagation “dead pixels”

Figure 7. Illustrating the failure cases of HPDM..

B. Additional results

There are multiple incosistencies in quantitative evaluation
of video generators that are inconsistent between previous
projects [53, 71]. For FVD [59] on UCF101 (the most pop-
ular metric for it), there are differences in the amounts of

Figure 8. Using different amounts of fake videos to compute
FVD [59] gives very correlated, but offset values with the main
trend being “the more —- the better”. We hypothesize that using
more synthetic samples yields better coverage of different modes
of the data distribution and decreases the influence of outliers.
These FVD scores are computed for different training steps of
HPDM-S. Using too few videos leads to undiscriminative results
only closer to convergence.

fake/real videos used to compute the statistics, FPS values,
resolutions, and real data subsets (“train” or “train + test”).
To account for these differences, in Tab. 6, we release a
comprehensive set of metrics for easier assessment of our
models’ performance in comparison with the prior work.
Apart from that, it also includes additional models, HPDM-
S and HPDM-M, and also the results for the fixed version of
our text-to-video HPDM model (after the main deadline, we
noticed that our FSDP-based [72] training was not updating
some of the EMA parameters properly, which was the cause
of gaussian jitter artifacts in Fig. 7).

To compute real data FVD statistics, we always use the
train set of UCF-101 (around 9.5k videos in total). We train
the models with the default 25FPS resolution. Our models
are trained for 64 frames, and to compute the results for
16 frames, we simply take the first 16 frames out of the
sequence.

Additional results are also provided on the project web-
page: https://snap-research.github.io/hpdm.

C. Implementation details

In this section, we provide additional implementation de-
tails for our model. We train our model in a patch-wise
fashion with the patch resolution of 16⇥ 64⇥ 64 for UCF-
101 [56] and 8⇥ 36⇥ 64 for text-to-video generation. Af-
ter the main deadline, we continued training our model on
UCF for several more training steps, and also trained two
smaller versions for fewer steps. We denote the smaller ver-
sions as HPDM-S and HPDM-M, while the larger one is
denoted as HPDM-L. They differ in the amount of train-

https://snap-research.github.io/hpdm


Table 6. Additional FVD evaluation results for class-conditional UCF-101 video generation. “Pre-trained” denotes whether the model was
pre-trained on an external dataset. “#samples” is the amount of fake videos used to compute the fake data statistics. In Fig. 8, we also
demonstrated that FVD scores computed for different amount of samples are well-correlated with one another. For IS, we cannot compute
it for 64-frames-long videos due to the design of C3D model [46, 53].

Method Resolution Pre-trained? #samples FVD# IS"
DIGAN [70] 16⇥ 128⇥ 128 7 2,048 1630.2 00.00
StyleGAN-V [53] 16⇥ 256⇥ 256 7 2,048 1431.0 23.94
TATS [13] 16⇥ 128⇥ 128 7 N/A 332 79.28
VIDM [38] 16⇥ 256⇥ 256 7 2,048 294.7 -
LVDM [21] 16⇥ 256⇥ 256 7 2,048 372 -
PVDM [71] 16⇥ 256⇥ 256 7 2,048 343.6 -
PVDM [71] 16⇥ 256⇥ 256 7 10,000 - 74.40
PVDM [71] 128⇥ 256⇥ 256 7 2,048 648.4 -
VideoFusion [37] 16⇥ 128⇥ 128 7 N/A 173 80.03
Make-A-Video⇤ [51] 16⇥ 256⇥ 256 3 10,000 81.25 82.55

HPDM-S

16⇥ 256⇥ 256 7 2,048 370.50 61.50
16⇥ 256⇥ 256 7 10,000 344.54 73.73
64⇥ 256⇥ 256 7 2,048 647.48 N/A
64⇥ 256⇥ 256 7 10,000 578.80 N/A

HPDM-M

16⇥ 256⇥ 256 7 2,048 178.15 69.76
16⇥ 256⇥ 256 7 10,000 143.06 84.29
64⇥ 256⇥ 256 7 2,048 324.72 N/A
64⇥ 256⇥ 256 7 10,000 257.65 N/A

HPDM-L

16⇥ 256⇥ 256 7 2,048 92.00 71.16
16⇥ 256⇥ 256 7 10,000 66.32 87.68
64⇥ 256⇥ 256 7 2,048 137.52 N/A
64⇥ 256⇥ 256 7 10,000 101.42 N/A

Table 7. Additional zero-shot FVD evaluation results for UCF-
101. For zero-shot evaluation, to the best of our knowledge, all
the prior works use 10,000 generated videos to compute the I3D
statistics.

Method Resolution FVD# IS"
CogVideo [25] 16⇥ 480⇥ 480 701.6 25.27
Make-A-Video 16⇥ 256⇥ 256 367.2 33.00
MagicVideo [75] 16⇥ 256⇥ 256 655 -
LVDM [21] 16⇥ 256⇥ 256 641.8 -
Video LDM [4] N/A 550.6 33.45
VideoFactory [63] 16⇥ 256⇥ 256 410.0 -
PYoCo [14] 16⇥ 256⇥ 256 355.2 47.46

HPDM-T2V

16⇥ 144⇥ 256 383.26 21.15
16⇥ 256⇥ 256 728.26 23.46
16⇥ 288⇥ 512 481.93 23.77
64⇥ 256⇥ 256 1238.62 N/A
64⇥ 288⇥ 512 1197.60 N/A

ing steps performed and also the latent dimensionality of

RINs [27]: 256, 512 and 1024, respectively. Our text-to-
video model HPDM-T2V was fine-tuned for 15k steps and
HPDM-T2V-1K for 100k steps. We provide the hyperpa-
rameters for our models in Tab. 8. For sampling, we use
spatial 50% patch overlapping to compute the metrics (for
performance purposes), and full overlapping for visualiza-
tions. We use stochastic sampling with second-order cor-
rection [29] for the first pyramid level. For later stages, we
use Also, we disabled stochasticity for text-to-video syn-
thesis since we have not observed it to be improving the
results. We use 128 steps for the first pyramid stage, and
then decrease them exponentially for later stages, dividing
the number of steps by 2 with each pyramid level increase.

D. Failed experiments

In this section, we provide a list of ideas which looked
promising inutitively, but didn’t work out at the end — ei-
ther because of some fundamental fallacies related to them,
or the lack of experimentation and limited amount of time to
explore them, or because of some potential implementation
bugs which we have not been aware of.



Figure 9. Random samples from HPDM-L on UCF-101 64 ⇥ 2562 [56] without classifier-free guidance. We display 16 frames from a
64-frame-long video with 4⇥ subsampling.

1. Cached inference has not sped up inference as much as
we expected. As described in Sec. 4.5 and Appendix C,
we cache the activations from previous pyramid levels
when sampling its higher stages. However, the speed-up
was just ⇡40%, which was not decisive. One issue is that
we do not cache some activations (tokenizer activations
and contexts). But the other reason is that grid-sampling
is expensive. Grid sampling could be avoided by upsam-
pling and then slicing, but this would lead to additional
memory usage and will complicate the inference code.

2. Positional encoding of the coordinates. For some reason,

the model started to diverge when we tried replacing raw
coordinates with their sinusodial embeddings. We be-
lieve that this direction is still promising, but is under-
explored.

3. Stochastic sampling and second-order sampling for later
stages. For UCF-101, we use stochastic sampling for
the first pyramid level, but disabled it for text-to-video
generation. Also, second-order correction was produc-
ing grainy artifacts for later pyramid stages.

4. Weight sharing between blocks. To conserve GPU mem-
ory, we tried to share the weights between all the trans-



(a) “A robot planting a tree.”

(b) “A confused grizzly bear in calculus class.”

(c) “A high-definition video of a pack of wolves hunting in a snowy forest, natural behavior, dynamic angles.”

(d) “A hot air balloon floating over a mountain range.”

Figure 10. Text-to-video generation results for variable text prompts. Note that our text-to-video model has been fine-tuned only for 15k
training steps from a 36⇥64 low-resolution generator. Animations and comparisons to the current SotA can be found in the supplementary.

former blocks, but that led to inferior results.
5. Cheap high-res + expensive low-res U-Net backbone. U-

Nets were also not converging well for us in their regu-
lar design and were not giving substantial performance
yields when combined with adaptive computation (only
⇡10% during training versus ⇡50% in RINs) due to the
irregular amounts of blocks per resolution in their de-
sign.

6. Random pyramid cuts. Another strategy to make the
later pyramid stages cheaper during training was to com-
pute them only once in a while. For this, we would ran-
domly sample the amount of pyramid stages for each
mini batch per GPU. When parallelizing across many

GPUs, this strategy gives enough randomness. While
it decreased the training costs without severe quality
degradation, it does not speed up inference and compli-
cates logging.

7. Mixed precision training. It produced consistently worse
convergence, either with manual mixed precision or au-
tocast, either for FP16 and BF16.

8. Fusing patch features for all the layers. That strat-
egy was not giving much quality improvement, but was
tremendously expensive, which is why we gave it up.



RIN Block

RIN Block RIN Block

RIN Block

Context Fusion

RIN Block

Tokenize

RIN Block

Context Fusion

RIN Block

RIN Block RIN Block

RIN Block

Context Fusion

Context FusionContext Fusion

RIN Block

RIN Block

Tokenize Tokenize

Detokenize DetokenizeDetokenize

Context Fusion

grid sample grid sample
mean

Linear

Flatten

Linear

Unflatten

Linear

Cross-Attn Self-Attn

Cross-Attn
data tokens

latent tokens
×4

data tokens

data tokens

sample patches 
& add noise

Figure 11. Full architecture illustration of HPDMwith depiction of the blocks.

Table 8. Hyperparameters for different variations of HPDM. For all the models, we used almost the same amount hyperparameters. For
HPDM-T2V, we used joint video + image training which is reflected by its batch size. For HPDM-T2Vand HPDM-T2V-1K, we also used
low-res pre-training by first training the lowest pyramid stage on 36⇥ 64-resolution videos for 500k steps.

Hyperparameter HPDM-S HPDM-M HPDM-L HPDM-T2V HPDM-T2V-1K

Conditioning information class labels class labels class labels T5-11B embeddings T5-11B embeddings
Conditioning dropout probability 0.1 0.1 0.1 0.1 0.1
Tokenization dim 1024 1024 1024 1024 1024
Tokenizer resolution 1⇥ 4⇥ 4 1⇥ 4⇥ 4 1⇥ 4⇥ 4 1⇥ 3⇥ 4 1⇥ 3⇥ 4
Latent dim 256 512 1024 3072 3072
Number of latents 768 768 768 768 768
Batch size 768 768 768 4096 + 4096 1024 + 1024
Target LR 0.005 0.005 0.005 0.005 0.005
Weight decay 0.01 0.01 0.01 0.01 0.01
Number of warm-up steps 10k 10k 10k 5k 5k
Parallelization strategy DDP DDP DDP FSDP FSDP
Starting resolution 16⇥ 64⇥ 64 16⇥ 64⇥ 64 16⇥ 64⇥ 64 8⇥ 36⇥ 64 16⇥ 72⇥ 128
Target resolution 64⇥ 256⇥ 256 64⇥ 256⇥ 256 64⇥ 256⇥ 256 64⇥ 288⇥ 512 16⇥ 576⇥ 1024
Patch resolution 16⇥ 64⇥ 64 16⇥ 64⇥ 64 16⇥ 64⇥ 64 8⇥ 36⇥ 64 16⇥ 72⇥ 128
Number of RIN blocks [27] 6 6 6 6 6
Number of pyramid levels 3 3 3 4 4
Number of pyramid levels per block 1/1/2/2/3/3 1/1/2/2/3/3 1/1/2/2/3/3 1/2/2/3/3/4 4/4/4/4/4/4

Number of parameters 178M 321M 725M 3,934M 3,934M
Number of training steps 40k 40k 65k 15k (+ 500k) 100k (+ 500k)

E. Potential negative impact

We introduced a patch-wise diffusion-based video genera-
tion model: a new paradigm for video generation that is a

step forward in the field. While our model exhibits promis-
ing capabilities, it’s essential to consider its potential nega-
tive societal impacts:



• Misinformation and Deepfakes. While our text-to-video
model underperforms compared to the largest existing
ones (.e.g, [22, 51]), it demonstrates a promising direction
on how to improve the existing generators further, which
creates a risk of generative AI misuse in creating mislead-
ing videos or deepfakes. This can contribute to the spread
of misinformation or be used for malicious purposes.

• Intellectual Property Concerns. The ability to generate
videos can lead to challenges in copyright and intellec-
tual property rights, especially if the technology is used
to replicate or modify existing copyrighted content with-
out permission.

• Economic Impact. Automation of video content gener-
ation could impact jobs in industries reliant on manual
content creation, leading to economic shifts and potential
job displacement.

• Bias and Representation. Like any AI model, ours is sub-
ject to the biases present in its training data. This can lead
to issues in representation and fairness, especially if the
model is used in contexts where diversity and accurate
representation are crucial.
To address the potential negative impacts, it is crucial to:

• Develop and enforce strict ethical guidelines for the use
of video generation technology.

• Continuously work on improving the model to reduce bi-
ases and ensure fair representation.

• Collaborate with legal and ethical experts to understand
and navigate the implications of video synthesis technol-
ogy in terms of intellectual property rights. Engage with
stakeholders from various sectors to assess and mitigate
any economic impacts, particularly concerning job dis-
placement.

In conclusion, while our model represents a notable ad-
vancement in video generation technology, it is imperative
to approach its deployment and application with a balanced
perspective, considering both its benefits and potential soci-
etal implications.


	. Introduction
	. Related work
	. Background
	. Diffusion Models
	. Recurrent Interface Networks

	. Method
	. Patch Diffusion
	. Deep Context Fusion
	. Adaptive Computation
	. Tiled Inference
	. Miscellaneous techniques
	. Implementation details

	. Experiments
	. Video generation on UCF-101
	. Text-to-video generation

	. Conclusion
	. Limitations
	. Additional results
	. Implementation details
	. Failed experiments
	. Potential negative impact

