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Supplementary Material

Code and Dataset
Our dataset, generation code, model checkpoints and train-
ing scripts will be made available upon publication at:

https://shapewalk.github.io/

Appendix Overview
This supplementary document is organized as follows:
• Section 1 provides additional analysis of our latent editor

models.
• Section 2 provides additional implementation details

about our dataset generation and model training pro-
cesses.

• Section 3 gives shape reconstruction examples.
• Section 4 showcases edit chain samples from our dataset,

including edit chains for additional table and vase
classes, and dataset statistics.

• Section 5 illustrates the sampling process for the 3D2VS
latent diffusion model.

1. Analysis
We differentiate in the additional results in this section be-
tween CD − REC and CD − REAL metrics, which respec-
tively measure the distance to the reconstructed edited shape
and the real edited shape. The latter metric is more relevant
for our task, as it measures the final editing ability of the
model (reported in the main paper).

1.1. Chained Shape Editing

We provide detailed results for the chained shape editing
task described in the main paper, in Table 2. We report
baseline results for our proposed chained shape editing task,
for chain lengths |P| ∈ {10, 15, 20}. Overall, while no
clear trend is observed for the Chamfer Distance, we ob-
serve that the average edit error for L2 distance decreases
with longer chains. This could be explained by the fact that
longer chains contain more sequences of fine-grained edits
which are less likely to make the feature representations di-
verge abruptly. On the other hand, shorter chains are more
likely to contain sequences of high-magnitude edits, which
amplify the cumulative prediction error. In that sense, a par-
allel could be made with the long-horizon prediction prob-
lem in trajectory forecasting, where the prediction error ac-
cumulates over time [2].

1.2. Oracle Editing

We provide detailed results for the chained shape editing
task when oracle magnitudes and directions are used, in Ta-

ble 2. Overall, the biggest gain for PC-AE based models is
observed when using oracle directions. This suggests that
the main bottleneck for our models is the edit direction pre-
diction task, which is more challenging than predicting the
magnitude from the input prompt.

1.3. Predicting Edit Magnitudes

Our decoupled latent editor models predict both a normal-
ized edit direction v̂ij and an edit magnitude m̂ij for each
edit. We use this property to analyze the correlation be-
tween the predicted edit magnitudes and the ground truth
edit intensities extracted from our metadata. We extract
decoupled edit vector predictions from our models on the
random subset, and compare them to the ground truth edit
intensities. In order to do that, we min-max normalize the
predicted edit magnitudes and bin them in the [1, 9] interval.
Ground-truth edit intensities are extracted from the ground-
truth edit vectors, similarly by discretizing the magnitude
of changes in the same interval. We plot confusion matri-
ces comparing these predicted discretized edit magnitudes
to the ground truth edit intensities in Figure 1. We show
results for three decoupled baselines: LATEFUSION1024,
LATEFUSION512, and OURS512×4.

Overall, we observe a strong correlation between the pre-
dicted edit magnitudes and the ground truth edit intensities
across all models. However all models tend to deviate from
the ideal diagonal magnitude predictions. We remark also
that the OURS512×4 model tends to deviate from the diago-
nal and avoids predicting the maximum possible magnitude
range. One way to alleviate these biases could be to intro-
duce explicit supervision to the edit magnitude prediction
task using the ground truth edit magnitude labels. For ex-
ample, a contrastive loss could incentivize the model to pre-
dict edit magnitudes that align with the ground truth ranking
of edit intensities.

2. Implementation Details

2.1. Shape Chain Generation

We detail in Figure 9 the process of sampling parameter
chains from the parameter tree. Each parameter vector θi
can be represented as a dependency tree. We start by sam-
pling a parameter tree θ0 using regressed parameters from
a real source shape in the realistic subset. We then succe-
sively sample parameters to edit by interpolating towards a
target shape in the realistic setting1.

1In the random setting, the source shape and subsequent parameters are
sampled randomly.
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Model decoupled?
|P| = 10 |P| = 15 |P| = 20

FCD−REC ACD−REC FCD−REAL ACD−REAL FL2 AL2 FCD−REC ACD−REC FCD−REAL ACD−REAL FL2 AL2 FCD−REC ACD−REC FCD−REAL ACD−REAL FL2 AL2

LATEFUSION1024 q 1.751 1.431 3.006 2.756 1.913 1.707 2.150 1.579 2.941 2.925 1.366 1.241 1.591 0.944 2.620 2.182 1.054 0.805

LATEFUSION512 q 1.802 1.413 3.031 2.801 2.018 1.770 1.804 1.469 2.824 2.755 1.309 1.221 1.414 1.005 2.301 2.272 1.059 0.880

LATEFUSION256 q 1.807 1.486 3.026 2.928 2.079 1.810 2.034 1.380 2.852 2.718 1.342 1.203 1.737 1.018 2.743 2.306 1.106 0.838

OURS512×8 q 2.240 1.665 3.680 3.169 2.311 2.022 2.471 1.664 3.347 2.956 1.591 1.351 1.571 0.992 2.599 2.341 1.207 0.937

OURS512×4 q 1.751 1.494 3.236 2.859 2.168 1.884 2.378 1.540 3.098 2.850 1.432 1.271 1.659 1.087 2.636 2.401 1.166 0.898

LATEFUSION1024 ¥ 1.773 1.452 3.066 2.794 2.002 1.734 1.704 1.290 2.787 2.667 1.212 1.184 1.502 1.049 2.279 2.242 0.999 0.817

LATEFUSION512 ¥ 1.687 1.430 2.694 2.698 1.883 1.672 1.978 1.328 3.089 2.749 1.300 1.190 2.149 1.307 3.224 2.676 1.170 0.900

LATEFUSION256 ¥ 2.057 1.555 3.071 2.824 2.043 1.743 2.306 1.630 3.342 2.987 1.443 1.305 2.397 1.394 3.514 2.734 1.170 0.923

OURS512×8 ¥ 1.827 1.358 3.243 2.858 2.097 1.809 1.982 1.331 2.918 2.679 1.359 1.234 1.331 0.865 2.187 2.214 1.035 0.826

OURS512×4 ¥ 1.647 1.348 3.028 2.826 1.961 1.765 1.698 1.240 2.713 2.582 1.328 1.211 1.450 0.884 2.268 2.163 1.053 0.821

Table 1. Chained shape editing ablation. We report detailed baseline results for our proposed chained shape editing task, for chain
lengths |P| ∈ {10, 15, 20}, using the PC-AE trained latent editors. Both the average final error and average edit error are reported for the
Chamfer Distance (CD) and L2 distance (L2) metrics. We differentiate between distances to the reconstructed edited shape (CD − REC)
and distances to the real edited shape (CD − REAL), which is the most relevant metric for our task. We highlight in grey the model we
select for our qualitative results.

Model decoupled?
|P| = 10 |P| = 15 |P| = 20

FCD−REC ACD−REC FCD−REAL ACD−REAL FL2
AL2

FCD−REC ACD−REC FCD−REAL ACD−REAL FL2
AL2

FCD−REC ACD−REC FCD−REAL ACD−REAL FL2
AL2

LATEFUSION1024 ¥ 1.773 1.452 3.066 2.794 2.002 1.734 1.704 1.290 2.787 2.667 1.212 1.184 1.502 1.049 2.279 2.242 0.999 0.817

+ O MAGNITUDE ¥ 1.118 0.941 2.323 2.242 1.592 1.437 1.037 0.910 2.106 2.142 0.978 0.996 0.608 0.631 1.442 1.892 0.784 0.714

+ O DIRECTION ¥ 0.688 0.360 2.109 2.054 0.822 0.551 0.360 0.279 1.903 1.944 0.410 0.329 0.137 0.341 1.358 1.747 0.207 0.316

LATEFUSION512 ¥ 1.687 1.430 2.694 2.698 1.883 1.672 1.978 1.328 3.089 2.749 1.300 1.190 2.149 1.307 3.224 2.676 1.170 0.900

+ O MAGNITUDE ¥ 1.206 1.017 2.328 2.300 1.628 1.445 1.192 1.015 2.241 2.311 1.027 1.027 0.777 0.762 1.727 2.039 0.816 0.731

+ O DIRECTION ¥ 0.699 0.386 2.136 2.082 0.805 0.561 0.507 0.356 2.134 2.020 0.500 0.384 0.094 0.345 1.347 1.776 0.172 0.319

LATEFUSION256 ¥ 2.057 1.555 3.071 2.824 2.043 1.743 2.306 1.630 3.342 2.987 1.443 1.305 2.397 1.394 3.514 2.734 1.170 0.923

+ O MAGNITUDE ¥ 1.150 0.952 2.337 2.280 1.636 1.457 1.272 1.104 2.477 2.429 1.159 1.085 0.684 0.734 1.583 2.072 0.770 0.736

+ O DIRECTION ¥ 0.719 0.423 2.185 2.108 0.846 0.610 0.747 0.449 2.267 2.112 0.695 0.468 0.267 0.463 1.422 1.804 0.309 0.402

Table 2. Oracle editing results. We report detailed baseline results when oracle magnitudes and directions are used for the chained shape
editing task, on all LATEFUSION models. We differentiate between distances to the reconstructed edited shape (CD − REC) and distances
to the real edited shape (CD − REAL), which is the most relevant metric for our task. Overall, the biggest gain for PC-AE based models is
observed when using oracle directions.

When boolean parameters with children are triggered, we
sample a random value for each child parameter. For scalar
parameters with a continuous domain, we sample a ran-
dom value from a discretized version of the parameter’s
range. After generating each parameter vector θi, we pass
it through a geometry checker (implemented in [12]) ensur-
ing that the resulting shape is valid. If the shape is invalid,
the whole chain is discarded and we start over from a dif-
ferent starting pair. Otherwise, the corresponding mesh is
synthesized using the shape program ϕΘ and added to the
chain.

2.2. Text Instructions Generation

We detail in Figure 2 the process of synthesizing text in-
structions for the chained shape editing task. Starting from
an edit vector, we map the edit intensity and the parame-
ter name to a predefined vocabulary set which is randomly
sampled. Optionally, the generated instruction is para-
phrased using a pre-trained language model. Our instruc-
tion generation method is completely automatic and does
not require any human annotation or additional data.

2.3. Architecture details

Rendered View Feature Extractor. We use a ResNet-
50 [7] model pre-trained on ImageNet [5] to extract ren-
dered view features from the input shapes. Since all syn-
thetic meshes are centered at the origin and aligned, we do
not require multi-view features to ensure invariance to rota-
tion. Every mesh is rotated around the z-axis by an angle
θ = π

8 , assigned a base RGB color and rendered from a
static viewpoint using the trimesh [4] library.
Autoencoders. We encode pointclouds using a PC-AE [1]
model pre-trained on the ShapeNet [3] dataset with a latent
dimension d = 256. We also use a 3D2VS [17] model
also pre-trained on ShapeNet with a latent dimension
d = 512×8. Note that our method is agnostic to the choice
of autoencoder model, and can be adapted to any other
shape or pointcloud representation.

PC-AE Latent Editors. We detail here the architecture of
our latent editor models.

• LATEFUSIONX is composed of a shape latent encoder,



Figure 1. Comparing predicted edit magnitude to ground truth edit intensity. We plot confusion matrices comparing the predicted edit
magnitudes binned in the interval [1, 9] to the ground truth edit intensities extracted from our metadata. We show results for three decoupled
baselines: LATEFUSION1024, LATEFUSION512, and OURS512×4. Overall, we observe a strong correlation between the predicted edit
magnitudes and the ground truth edit intensities. However, a bias can be observed in the OURS512×4 model, which tends to deviate from
the diagonal predictions, and avoids predicting the maximum possible magnitude range.

Figure 2. Synthesizing edit instructions. Our method generates synthetic text instructions by first applying rule-based generation to
translate parameter changes into natural language. The edit intensity is mapped to a natural language intensity depending on the parameter
type. To add diversity, the vocabulary describing the edit is randomly sampled, edit directions are randomly inverted, and a paraphrasing
transformer model is optionally employed to augment the final instructions.

an edit direction prediction module, and an edit magni-
tude prediction module. The shape latent encoder is a
2-layer MLP with hidden dimensions [256, 256]. We use
ReLU activations for all layers, and a linear activation for
the output layer. The edit direction prediction module is a
4-layer MLP with hidden dimensions [X, 256, 256, 256].
Since we normalize the predicted edit vector, we remove
the final bias term from the output layer. We use batch
normalization [8] for all layers except the output layer.
The edit magnitude prediction module is a 3-layer MLP
with hidden dimensions [256, 128, 64] respectively.
For all modules, we use dropout [14] with a probability
of 0.1 for all layers except the output layer.

• OURS512×X only uses the edit direction prediction mod-
ule which is an X-layer MLP with hidden dimensions
of the size of the latent space of the autoencoder. We

use batch normalization [8] for all layers except the out-
put layer, dropout with a probability of 0.2, and ReLU
activations for all layers. We separately predict the edit
magnitude and edit direction using the same modules as
LATEFUSION.

We illustrate in Figure 4 the architecture of the latent editor
diffusion model.

Text Encoder Model. We use a pre-trained BERT [6]
model to encode the language instructions into a 768-
dimensional feature vector. We employ the base uncased
model with 12 layers, 12 self-attention heads, and 110M
parameters. Training with larger instances of BERT or with
LLM-extracted text features could potentially improve the
generalization ability of our models on unseen language
instructions.

3D2VS Latent Editors. We fine-tune a latent diffusion



Figure 3. Diffusion-based latent editor. We illustrate the archi-
tecture of the transformer-based latent editor diffusion model used
to edit 3D2VS [17] latents. || indicates concatenation of the input
features.

Figure 4. MLP-based latent editor. We illustrate the architecture
of the MLP-based latent editor used to edit PC-AE [1] latents, for
the decoupled magnitude and direction prediction models. || indi-
cates concatenation of the input features.

model trained in the space of a frozen 3D2VS [17] auto-
encoder. The best performing model uses a depth of 24
layers with 8 channels and a latent dimension of 512 × 8,
and conditions the model on text features by feeding
them as keys and values to the cross-attention layers. We
illustrate in Figure 3 the architecture of the latent editor
diffusion model.

2.4. Training

Shape Sampling. We sample N = 4096 points from
each synthesized mesh using the triangle point sampling
scheme [16]. Pointclouds sampled from synthetic shapes
are centered at the origin, normalized to the unit sphere,
and rescaled alongside each axis to align with ShapeNet
statistics. A minor downside of normalizing shapes is that
the model will only be able to learn to apply edits relative
to the scale of the input shapes.

Figure 5. t-SNE embeddings of shape reconstructions. We plot
t-SNE embeddings [15] of the rendered view features of the input
shapes and their reconstructions in the space of the rendered view
feature extractor ϕR. We also provide the PSNR ratio between
input and reconstructed shape rendered views.

PC-AE Latent Editor. We train our models using the
Adam optimizer [10] with a learning rate of 1 × 10−4, and
an effective bath size of 128. The learning rate is linearly
increased from 1 × 10−6 to 1 × 10−4 during the first 8
epochs, and then gradually decayed back to 1 × 10−6

following a cosine annealing schedule [11]. We train
our models on two NVIDIA V100 GPUs with 32GB of
memory each. Training on the full realistic set takes around
60 minutes, with pre-extracted text and pointcloud features.
Almost all models converge within 50 epochs, and we use
the best model checkpoint based on the validation loss for
all experiments.

3D2VS Latent Editor. To fine-tune the latent diffusion
models, we use gradient clipping and a half-cycle cosine
after a warmup of 20 epochs. We train the models for
200 epochs with a batch size of 32 on eight NVIDIA V100
GPUs with 32GB of memory each. Training and sampling
strategies are the same as in [9, 17].
All text and pointcloud features are pre-extracted and
cached to disk to speed up training.

3. Shape Reconstructions
We illustrate in Figure 12 the top-8 and bottom-8 shape
reconstructions from the 3DCoMPaT [13] dataset into the
GeoCode representation, ranked by rendered view feature
similarity. Overall, we observe that the reconstructions are
of high quality, and that the model is able to capture the
main shape features of the input shapes. The worst recon-
structions are discarded from the shape interpolation pro-
cess as they do not generally lead to realistic reconstructed
shapes.



Figure 6. ShapeWalk dataset statistics. We plot the distribution of the number of shapes per chain (left), of the intensity of edits (middle),
and of the complexity of edits (right). For the edit complexity, note that the frequency is provided in log-scale. The vast majority of edits
in the realistic subset are granular, affecting a single shape parameter.

In order to further investigate the quality of the reconstruc-
tions, we compute t-SNE embeddings [15] of the rendered
view features of the input shapes and their corresponding
reconstructions in the space of ϕR, the rendered view fea-
ture extractor. We show the results in Figure 5. While re-
constructed (in purple) and source shapes (in yellow) from
the 3DCoMPaT [13] dataset form two distinct clusters, we
observe that the reconstructions are generally close to the
input shapes in the feature space. The filtered reconstruc-
tions (in blue) are more likely to be outliers in the feature
space, and are thus discarded from the shape interpolation
process to avoid unrealistic shape interpolations.

4. Dataset Insights
4.1. Shape Chains

In Figures 10, and 11, we showcase sampled shape chains
from our dataset truncated to the first N = 9 shapes.
For each chain edge, we show the corresponding language
instruction describing the parameter changes necessary to
transition from one shape to the next.

4.2. Dataset Statistics

In Figure 6, we plot the distribution of the number of shapes
per chain (left), of the intensity of edits (middle), and of the
complexity of edits (right) in the realistic subset2. The edit
complexity corresponds to the number of shape parameters
affected by the edit. For edit complexity, the frequency is
provided in log-scale. We observe that the vast majority of
edits in the realistic subset are granular, and affect a single
shape parameter. Chain lengths range from N = 6 to N =
29 shapes, with an expected length around N = 15 shapes.
The intensity of edits is not uniformly distributed and skews
heavily towards low-intensity edits, which is expected.

2Note that we do not show statistics for the random subset as all param-
eters including chain length and edit intensity are static and determined at
generation.

5. Diffusion-based Editor Generation Process
We illustrate in Figure 7 the process of generating a shape
chain using a diffusion-based latent editor model. We show-
case the generation of a shape chain from a source shape to
a target shape using our latent editor operating in the space
of the 3D2VS autoencoder, illustrated in Figure 3. We show
32 intermediate shapes generated by the diffusion model for
each sampling step.



Figure 7. Diffusion-based shape chain generation. We illustrate in this figure the process of generating a shape using a diffusion-based
latent editor model, for a source shape (blue) and a text instruction, to obtain a final target shape (orange) after T = 32 diffusion steps.



Figure 8. Chain samples for additional classes. We showcase in this figure additional chain samples for the realistic subset, for the table
and vase classes. Our method is able to generate realistic shape chains for a variety of classes, given support for the corresponding shape
programs. In our case, GeoCode [12] supports the classes we use in this work. Extending our method to new classes will require extending
these underlying shape programs.



Figure 9. Parameter tree sampling. We detail in this figure the process of sampling parameter chains from the parameter tree. Each
parameter vector θi can be represented as a dependency tree. We start by sampling a random parameter tree θ1 from the root node of
the tree (or using regressed parameters from a real shape in the realistic subset). Edit parameters are then sampled randomly (or using
interpolation for the realistic set) from the tree until the desired chain length is reached (or until the target shape is reached).



Figure 10. Additional dataset samples. We showcase sampled chains from our dataset truncated to the first N = 9 shapes. We
color shapes based on their proximity to the starting shape (blue), and the ending shape (orange). For each chain edge, we show the
corresponding language instruction describing the parameter changes necessary to transition from one shape to the next. All shapes are
normalized to the unit cube and centered at the origin.



Figure 11. Additional dataset samples. We showcase sampled chains from our dataset truncated to the first N = 9 shapes. We
color shapes based on their proximity to the starting shape (blue), and the ending shape (orange). For each chain edge, we show the
corresponding language instruction describing the parameter changes necessary to transition from one shape to the next. All shapes are
normalized to the unit cube and centered at the origin.



Figure 12. Shape reconstruction examples. We illustrate in this figure the original shapes from the 3DCoMPaT [13] dataset (yellow),
and their corresponding reconstructions into the GeoCode representation (purple). In the top two rows, we show the top-8 reconstructions
ranked by rendered view feature similarity, and the bottom-8 reconstructions ranked by rendered view feature similarity in the bottom
two rows. While top reconstructions are generally of high quality, the bottom reconstructions are discarded from the shape interpolation
process as they do not generally lead to realistic reconstructed shapes. We discard these shapes to avoid unrealistic shape interpolations in
our shape chain generation process.
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