FairDeDup: Detecting and Mitigating Vision-Language Fairness Disparities in Semantic Dataset Deduplication

Supplementary Material

1. Bias Constrained Clusters

As described in Sec. 6, clustering may limit the availability of lower represented samples for biasing sensitive concept representation. We show several demonstrative clusters in Fig. 1 alongside descriptions of possible limitations.

(a) Stock close-ups bifurcated across gender presentation and age.

Figure 1. Sample Clusters where selecting for certain underrepresented concepts may be difficult due to them being split into an entirely different cluster.

2. Hyperparameters

Parameter	Value
Model	CLIP
Image Encoder	Vision Transformer Base/16
Text Encoder	Text Transformer
Epochs	16
Batch Size	33,820
Learning Rate	5×10^{-4}
LR Warmup	Linear / 2,000 Batches
LR Schedule	Cosine Annealing
Optimizer	AdamW
Decay	0.2
eta_1	0.90
β_2	0.98
ϵ	1×10^{-6}
Precision	AMP BFloat16

Table 1. Hyperparameters used to train all models.

3. Choosing Sensitive Concepts

We derive sensitive concepts based on commonly protected groups in law. For example, Title VII of the US Civil Rights Act prohibits employment discrimination based on groups like *race* and *religion*. We take the intersection of commonly protected groups and those which are annotated in VL fairness datasets (*e.g.*, only *race* from above) to inform our concept design. In this way, we are able to consider concepts relevant to real-world practice while retaining our ability to evaluate the effectiveness of our mitigation strategy in a lab setting. To represent intersectional identities, we specifically choose sensitive concepts which simultaneously capture many of these protected groups.

4. Sensitive Concept Prototypes

1	person	56	young white woman
2	woman	57	young white man
3	man	58	young indian person
4	black person	59	young indian woman
5	black woman	60	young indian man
6	DIACK MAN	61	young latino person
7	white yerson	62	young lating woman
8	white woman	6.5	young factino man
9	indian person	65	young east asian person
10	indian woman	66	young east asian man
12	indian man	67	young middle eastern person
12	latino person	68	young middle eastern woman
13	latino woman	69	young middle eastern man
15	latino man	70	young southeast asian person
16	east asian person	71	young southeast asian woman
17	east asian woman	72	young southeast asian man
18	east asian man	73	child
19	middle eastern person	74	black child
20	middle eastern woman	75	white child
21	middle eastern man	76	indian child
22	southeast asian person	77	latino child
23	southeast asian woman	78	east asian child
24	southeast asian man	79	middle eastern child
25	old person	80	southeast asian child
26	old woman	81	baby
27	old man	82	black baby
28	old black person	83	white baby
29	old black woman	84	indian baby
30	old black man	85	latino baby
31	old white person	86	east asian baby
32	old white woman	87	middle eastern baby
33	old white man	88	southeast asian baby
34	old indian person	89	boy
35	old indian woman	90	girl
36	old indian man	91	black boy
37	ald lating yerson	92	DidCK gili
38	old lating man	93	white girl
39	old east asian person	94	indian boy
40	old east asian woman	95	indian girl
42	old east asian man	97	latino boy
43	old middle eastern person	98	latino girl
44	old middle eastern woman	99	east asian boy
45	old middle eastern man	100	east asian girl
46	old southeast asian person	101	middle eastern boy
47	old southeast asian woman	102	middle eastern girl
48	old southeast asian man	103	southeast asian boy
49	young person	104	southeast asian girl
50	young woman	105	person with dark skin
51	young man	106	person with light skin
52	young black person	107	old person with dark skin
53	young black woman	108	old person with light skin
54	young black man	109	young person with dark skin
55	young white person	110	young person with light skin
	(a) Sens	itive	Concepts

A photo of a {concept}
 This is a photo of a {concept}

3 A {concept}

(b) Text Templates

Figure 2. Sensitive concepts and templates used to generate text concept prototypes for FairDeDup in Sec 3.

5. Deduplicated Cluster Examples

Figure 3. Additional samples from person-related clusters after applying **SemDeDup** (left) and **FairDeDup** (right). Samples are randomly selected from clusters manually identified to include people. We annotate each cluster with our identification of its semantic contents.

		Full Data	SemDeDup (50%)	FairDeDup
	Acc@1	.2947	.3096	.2988
-a	Acc@5	.6247	.6359	.6271
	MPCR	.3163	.3228	.3126
	Acc@1	.5060	.5365	.5360
Ŷ	Acc@5	.8235	.8420	.8385
	MPCR	.5213	.5501	.5443
	Acc@1	.7646	.7652	.7534
÷	Acc@5	.9249	.9245	.9223
	MPCR	.7512	.7506	.7386
	Acc@1	.6640	.6579	.6535
1k	Acc@5	.8993	.8974	.8970
	MPCR	.6639	.6578	.6536
h	Acc@1	.5142	.5036	.4989
ketc	Acc@5	.7803	.7774	.7724
łs	MPCR	.5144	.5040	.4993
	Acc@1	.5821	.5776	.5747
v2	Acc@5	.8453	.8413	.8368
	MPCR	.5822	.5774	.5747

6. Additional Datasets and Metrics

Table 2. Zero-shot classification performance on ImageNet variants from CLIP Benchmark. Mean Per Class Recall abbreviated as MPCR. Higher is better for all metrics.

		Full Data	SemDeDup	FairDeDup
r30k	Image R@5	.8728	.8736	.8714
flick	Text R@5	.9640	.9670	.9620
r8k	Image R@5	.8570	.8592	.8574
flick	Text R@5	.9450	.9400	.9300
0000	Image R@5	.6325	.6318	.6255
	Text R@5	.7852	.7882	.7810

Table 3. Image-text (Image R@5) and text-image (Text R@5) retrieval Recall@5 on Flickr and COCO from CLIP Benchmark. Higher is better for all metrics.

		Full Data	SemDeDup (50%)	FairDeDup
	Acc@1	.8526	.8346	.8429
ars	Acc@5	.9923	.9909	.9922
5	MPCR	.8541	.8344	.8429
LY .	Acc@1	.1791	.1742	.1685
unt	Acc@5	.3978	.3950	.3889
9	MPCR	.1789	.1740	.1683
	Acc@1	.3976	.3969	.4809
fer	Acc@5	.9358	.9115	.9413
	MPCR	.4057	.3702	.4152
e) #	Acc@1	.1563	.1497	.1665
igv	Acc@5	.4164	.4146	.4212
	MPCR	.1545	.1495	.1667
p	Acc@1	.4159	.4101	.3383
gtsr	Acc@5	.7352	.6814	.7062
	MPCR	.3884	.3806	.3571
ï	Acc@1	.3896	.5474	.5890
nnis	Acc@5	.8064	.8022	.9058
u	MPCR	.3938	.5531	.5911
net	Acc@1	.4722	.4754	.4781
ject	Acc@5	.7296	.7283	.7311
qo	MPCR	.4614	.4681	.4665
der	Acc@1	.5371	.5157	.5041
ren	MPCR	.5368	.5155	.5036
-	Acc@1	.9659	.9705	.9686
stl1(Acc@5	.9996	.9998	.9995
•1	MPCR	.9659	.9708	.9684
76	Acc@1	.6856	.6786	.6838
ın39	Acc@5	.9344	.9351	.9363
SI	MPCR	.6730	.6613	.6662
01	Acc@1	.7432	.7617	.7584
c20(Acc@5	.9498	.9518	.9515
ΛO	MPCR	.8197	.8297	.8286

Table 4. Additional zero-shot classification results from CLIP Benchmark. Mean Per Class Recall abbreivated as MPCR. Higher is better for all metrics.

		Full Data	SemDeDup (50%)	FairDeDup
h	Acc@1	.8304	.8230	.8309
101	Acc@5	.9399	.9394	.9578
ca	MPCR	.9193	.9035	.9061
•.	Acc@1	.9198	.9255	.9203
i faı	Acc@5	.9986	.9984	.9992
	MPCR	.9198	.9254	.9204
٤.	Acc@1	.7234	.7291	.7299
ifa 1 100	Acc@5	.9342	.9342	.9386
	MPCR	.7231	.7289	.7303
L =	Acc@1	.2033	.2101	.2232
bj dis	Acc@5	.9187	.9187	.9187
0.	MPCR	.1686	.1633	.1673
느ㅋ	Acc@1	.1421	.2317	.1916
c lev	Acc@5	.6474	.8174	.6397
0 5	MPCR	.1397	.2264	.1873
tic	Acc@1	.0646	.3209	.0666
abe	Acc@5	1.0000	1.0000	1.0000
di	MPCR	.2178	.1998	.2029
q	Acc@1	.1949	.1692	.1960
mla	Acc@5	.8430	.8236	.8270
р	MPCR	.1677	.1869	.1569
er.	Acc@1	.0226	.0272	.0244
prit el orid	Acc@5	.1259	.1264	.1302
ds lab	MPCR	.0231	.0276	.0249
s s	Acc@1	.0305	.0315	.0305
prit brit	Acc@5	.1600	.1568	.1625
ds	MPCR	.0313	.0321	.0312
es os	Acc@1	.0315	.0317	.0317
prit vel yp	Acc@5	.1553	.1559	.1596
ds]	MPCR	.0311	.0312	.0312

		Full Data	SemDeDup	FairDeDup
	Acc@1	.5330	.5021	.5074
dtd	Acc@5	.8293	.7883	.8202
	MPCR	.5330	.5011	.5080
at	Acc@1	.4904	.5220	.5246
ros	Acc@5	.9335	.9289	.8987
en	MPCR	.5117	.5288	.5404
S	Acc@1	.6723	.6536	.6878
I) We	Acc@5	.8533	.8442	.8374
θi	MPCR	.6657	.6384	.6509
i Hi	Acc@1	.1589	.1505	.2363
kii ^{gi}	MPCR	.2134	.1707	.2134
m	Acc@1	.5521	.4720	.5910
pca	MPCR	.5521	.4719	.5909
	Acc@1	.8929	.8577	.8812
pets	Acc@5	.9951	.9940	.9937
	MPCR	.8917	.8570	.8802
ں د	Acc@1	.5694	.5892	.5763
esis 45	Acc@5	.8889	.8938	.8914
-	MPCR	.5751	.5955	.5853
orb	Acc@1	.0539	.0502	.0550
alln azin	Acc@5	.2796	.2781	.2738
Sm: labe	MPCR	.0547	.0509	.0560
orb	Acc@1	.0927	.1125	.1114
allne	Acc@5	.5319	.5770	.5544
sm: Iabel	MPCR	.0922	.1116	.1106
_	Acc@1	.3973	.3657	.4008
whn	Acc@5	.7782	.7694	.8107
s	MPCR	.3727	.3670	.3238

Table 6. Additional results for VTAB extending Tab. 5.

Table 5. Zero-shot classification performance on Visual Task Adaptation Benchmark (VTAB) datasets from CLIP Benchmark. Mean Per Class Recall abbreviated as MPCR. Higher is better for all metrics.

7. Extended Pseudo-Code

```
1 def semdedup(embs, eps):
      # Sort by distance to the cluster centroid.
      sort_by_dist_to_centroid(embs, desc=True)
      # Compute the pairwise cosine similarity
      pair_sims = embs @ embs.T
6
7
      triu_sims = torch.triu(pair_sims, diagonal=1)
      M = torch.max(triu_sim_matrix, dim=0)[0]
8
      # Keep if the max similarity <= threshold</pre>
10
      points = M <= 1 - epsilon
11
12
      log_and_keep(points)
14 def fairdedup(embs, prototypes, eps):
      # Get similarity with concept prototypes
15
      proto = embs @ prototypes.T
16
      balance = AverageMeter(prototype.shape[0])
18
      tovisit = torch.ones(embs.shape[0])
19
      while tovist.any():
20
21
          # Find an unvisited neighborhood
          node = torch.where(tovisit)[0][0]
         sims = embs[node] @ embs.T
23
24
         neighbors = torch.where(sims > 1 - eps)
          neighbors = neighbors[0]
25
26
          # Maximize least represented concept
27
          c = balance.get_min_concept()
28
29
          point = proto[neigbors][:, c].argmax()
          balance.update(point)
30
31
          log_and_keep(point)
32
          tovisit[neighbors] = 0
33
34
35
  #
   Input: embedding_model, dataset, eps,
      prototypes
36 # Embed and cluster the dataset
37 embeddings = embedding_model(dataset)
38 per_cluster_embeddings = kmeans(embeddings)
39 for cluster in per_cluster_embeddings:
40
      # Choose selection method
      semdedup(cluster)
41
42 fairdedup(cluster)
```

Figure 4. Extended PyTorch-style pseudo-code for SemDeDup and FairDeDup selection given concept prototypes, an embedding_model, target dataset to deduplicate, and an eps similarity threshold for determining duplicates. SemDeDup pseudo-code modified from the original paper.