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1. Additional Details on Baseline Comparisons
1.1. Baseline Architectures

In this section, we discuss additional details of the baseline
approaches and network architectures considered in the pa-
per. For each baseline, we list the equations modeling the
on-sensor computation. The output of this step is read off
the sensor, transmitted to a host processor, and processed
by a full-precision fully-connected layer there. This fully-
connected layer is trained end to end for each baseline, but
omitted in the following equations. The size of the weight
matrix of this layer is NV x M, where N is the number of
elements of the output of a baseline (i.e., it varies per base-
line) and M is the number of categories to classify in the
respective dataset (M = 9 for hand gesture recognition and
M = 4 for lip reading). Note that this off-sensor model
can be further optimized for a given task, but here we use
the simplest off-sensor model to demonstrate the benefits of
our spatio-temporal feature encoder. Source code will be
made available on the project website.

Table 1 shows an overview of all baselines, including
their Top-1 accuracy for the two tasks, the number of pa-
rameters in the feature encoder, the memory required to
store intermediate features in the forward pass, and the
number of values outputted.

1.1.1 RAW Mode

The RAW camera mode simply outputs the input with a res-
olution of 256 x 256 pixel at 8 bit precision at every time
step. This data is sent off the sensor and processed by a
fully-connected layer there. The output layer on the sensor,
0, is simply the input x; at each time step ¢:

0y = X¢. (l)
The accuracy of this model, as well as other baselines with-

out an RNN, is calculated by averaging the scores over the
16 frames and use the largest as the prediction for the video.

1.1.2 Difference Camera

The difference camera is a simple temporal feature encoder.

h; = x; ()
0; = 1, (Xt - htfl) 3)
-1 forx < —§
where v, (z) = 0 for —6 <x<¢ ,for some thresh-
1 ford <x

old 4. The difference camera’s output is sparse. For com-
parison, we output 64 x 64 ternary frame indicating the po-
larity of the pixel at every time step t. For this purpose, we
add a hidden state h;_; that “remembers” the last intensity
value of each pixel. The output at each frame is then the
difference between the current intensity value at a pixel and
the hidden state, i.e., the intensity recorded at the last frame.

1.1.3 Naive Spatial Downsampling (NSD)

We test naive spatial downsampling of the RAW input by
downsampling from 256 x 256 to 64 x 64 sized images
with bilinear interpolation. Each frame is outputted to the
decoder, resulting in 16 x more data readout than our en-
coder.

1.1.4 Naive Spatio-Temporal Downsampling (NSTD)

We further downsample the naive spatial downsampling
case temporally to achieve our level of compression. Ev-
ery 16 frames, a single spatially downsampled image is sent
out to the decoder. Note that our proposed method is theo-
retically able to learn the naive downsampling case.

1.1.5 CNN-only Encoder

We test just the CNN-only encoder that has a single convo-
lutional layer of 16 kernels operating on the 64 x 64 down-
sampled image. This is the same CNN used in tandem with
the RNNs. In this case, the features are sent to the off-sensor
decoder every timestep.



1.1.6 Recurrent Neural Network (RNN) Architectures

We next describe several RNN architectures that we have
tested at full precision and also using binary weights. We
list the equations that readers will be most familiar with in
the following. Note that we do not use bias values for any
of these RNNs. Moreover, in the binary setting, all nonlin-
ear activations functions 1) are replaced by the sign function
in the forward pass and the gradient of the tanh function
for backpropagation during training (this is smoother and
more robust than naively binarizing the weights at the end of
training or using the straight-through-estimator) unless oth-
erwise noted. In all cases CNN (-) refers to a CNN-based
feature encoder operating directly on the intensity, x;, at
time step ¢. Unless otherwise noted, the output is read from
the sensor only every 16 time steps and then processed off-
sensor by the aforementioned fully-connected layer. The
number of values output from each RNN is fixed to 4096
values every 16 time steps, as this is the number our hard-
ware platform can achieve in practice. In the main paper, we
also show how decreasing bandwidth deteriorates accuracy.

Simple Convolutional RNN (SRNN) The SRNN base-
line is the simplest RNN that uses a hidden state h; at each
time step as

h; = wj,* CNN (x;) 4+ up * hy_1 + by, 4)
h; = ¢y, (hy), (5)
Oy = flt (6)

where 1), = tanh() function. As mentioned before, we set
bias values by, for this architecture and all following to 0.

Convolutional Long Short-term Memory (LSTM)
Long short-term memory (LSTM) models [4, 7] are among
the most well-known RNN architecture. Originally intro-
duced to mitigate the vanishing gradient problem during
RNN training, an LSTM usually provides a hidden state hy,
cell state ¢, an input i;, output o4, and forget f; gates. We
use a convolutional variant of an LSTM:

f, =y (Wpx CNN (x¢) +up xhy 1 +bg),  (7)

iy = v; (Wix CNN (x¢) +u; * hy 1 +b;), )]
01 = o (Wo* CNN (x¢) + uo * hy—1 +b,), )
C; = 1z (wzx CNN (x4) +uz * hy_1 + bg), (10)
¢, =1 Oci1 +i; OC, (1T)
h, =0, ®0(cy) (12)

where 1y = ¢; = 1, = 1z = o(), the sigmoid activation
function. Note that the LSTM in its standard notation has an
output gate o, but (confusingly), this is not what is actually
read off the sensor. For the LSTM, the hidden state h; is
actually read off the sensor and further processed by the
full-connected layer.

Convolutional Gated Recurrent Unit (GRU) The
GRU [3] is among the most popular RNN architectures. It
provides two gates: an update gate z; and a reset gate r;.
GRUs have been introduced as leaner variants of LSTM that
offer similar performance in many application with fewer
parameters. The convolutional GRU we use is

zt =, (W, *CNN (x¢) +u, xh; 1 + b,), (13)
ry = ¢, (WxCNN (x;) + u, *h;_1 + b,.), (14)
hy = 5 (WpxCNN (%) +upx (v, © hy_q)+by),  (15)
hy=(1-2)0h1 +2z Ohyo =hy, (16)

where v, = 1), = 0 and v; = tanh().

Similar to the LSTM, for a GRU the hidden state h;
is read off the sensor and further processed by the full-
connected layer.

Convolutional Minimal Gated Unit (MGU) MGU [9]
were introduced as the minimal variant of gated units, i.e.,
they only use a single gate which is treated as the forget gate
f;. The convolutional variant we use is

f; =y (WyxCNN (x;) +upxhy g +by), (17)
hy = 5 (WpxCNN (%) +up # (f, @ hy_q)+by), (18)
h,=(1-f)®h,1+f ®h,0, =hy, (19)

where ¢y = () and ¢; = tanh().
Again, the hidden state h; is read off the sensor and fur-
ther processed by the full-connected layer.

Developing the PixelRNN Architecture We start with a
simple, intuitive formulation of an RNN, inspired by the
GRU and MGU. We call this the general RNN (genRNN)

f; =y (wy x CNN(x;) +uy xh,_y +by)  (20)
h; = ¢, (wy * CNN(x;) +up, +he_1 +b;)  (21)
hy=(1-f)0h1+fOh (22)
0; = 1o (Wo ¥ CNN(x¢) +u, ¥ hy 1 +by) (23)

where 1)y = 1); = o() and v, an optional non-linear ac-
tivation. The hidden state is updated by interpolating be-
tween the previous hidden state h;_; and the new candidate
hidden state h. In the highly quantized binary setting, we
simplify these equations even more by setting

h; = —h,_, (24)

which is computationally simple and proved to work well
in practice when the hidden state is re-initialized to all ones
every K frames for each new gesture and the weights are



either -1 or 1. We can simplify the genRNN form and arrive
at PixelRNN’s architecture:

f; =1y (Wypx CNN (x4) +uyp xhyq), (25)
h; =f, O h;_q, (26)
0 =, (Wo * CNN (x¢) +up xhy_1q). 27

where 1), is the identity operator. We found having a sepa-
rate output gate increases performance as it allows the hid-
den state to focus on accumulating information temporally
while the output can choose what features to transmit from
the hidden state and the input, instead of having the hidden
state do both.

1.1.7 Synchronous Event Camera Approximation

As a temporal-only encoder, we look to the event camera.
The ideal event camera is asynchronous and would call for
a completely different kind of neural network architecture.
In practice, events are time-stamped, effectively creating a
synchronous event camera. One of the advantages of event
cameras is that the readouts are often sparse if most of the
scene is not changing. Here, we approximate a synchronous
event camera that sends out a 64 x 64 binary image encoding
the locations of events each timestep. The genRNN archi-
tecture can approximate this when the CNN layer is omit-
ted, i.e. CNN() is an identity function, wy = wj, = w, = 1,

uy = u, = —1,u, = 0, ¥y, is the identity function. This
leads to
fy = ¢f(Xt - htfl) (28)
hy=f,©(x —h_1)+(1-£)Oh_, (29)
0 = Yo(x; —hy_1) (30)
1 f >0
where ¢ (x) = { 0 ;Ii} <5
1 forz >4
and ¢, (z) = 0 forlx|<é
—1 forz<§

We include the baseline comparison here in the supplement
as an additional temporal-only encoder. The readout band-
width is calculated as 64 x 64 ‘events’ (values are -1 or 1).
Unlike the RNNs, the event camera approximation does not
compress temporally, so we evaluate the accuracy by aver-
aging the scores over the 16 frames and use the largest as
the prediction for the video.

1.2. Additional Experiments

Binarization Regimes As mentioned above, the non-
linearites in the RNN architectures become sign functions
when operating in the —1,1 binary regime, unless other-
wise noted. The hidden states are similarly binarized. Al-
ternatively, we could operate in the 0 and 1 regime. These
lead to slightly different interpretations. In the 0,1 case,

information can be lost when it is set to 0. In the —1,1
case however, no information is “lost.” Rather the values in
the hidden state will flip between —1 and 1. To determine
which regime to use, we tested all the architectures with
both binarizations. To train the models effectively, we use
the following gradient estimators.

In the —1, 1 case, we utilize the gradient of tanh(mux) as
a gradient estimator for the sign function

Forward: w = ¢(w) = sign(w) 31)

Backward: % ~m - (1 — tanh?(mw)) (32)
where m can be used to tune how steep the transition be-
tween —1 and 1 is. We test both our PixeIRNN architecture
as well the general architecture outlined in equations 20-23.
Tanh approximates the sign function well, especially if m is
large. Tanh is also differentiable, so its gradient can be used
as a good gradient estimator for the sign function. However,
if m is too large, there will be more saturated neurons. Em-
pirically, we found networks trained with m = 2 had the
best validation performance with around 37.8% saturated
neurons for the converged network.

In the 0, 1 case, we utilize the analogous gradient of the
sigmoid function He%m to estimate the gradient
Forward: w = q() = () (33)

—mw

dg = m-e
o (14 e mw)2

Backward: (34)

1 forw >0
where ¢ ¢ (x):{ 0 forw<0

and m is used to tune the steepness of the transition be-
tween 0 and 1. We found binarizing to —1 and 1 had higher
performances than when binarizing to 0 and 1.

In addition, we tested the stochastic binarization and the
straight-through-estimator (STE) techniques for training bi-
nary networks. We opted for the gradient of the tanh func-
tion for it’s slight edge over the STE and stochastic bina-
rization. For the 1CNN+PixelRNN, tanh yielded 85.6% /
80.0% while STE yielded 80.0% / 80.0% for hand gesture /
lip reading respectively.

Hidden State Initialization We tested different hidden
state initializations, initializing to all zeros or all ones ev-
ery K frames. In most cases, the initialization did not make
a difference. In some cases, however, initializing to all ones
performed slightly better on Hand Gesture recognition and
Lip reading. For this reason, we initialize the hidden state
to all ones every K frames.

Extended Architecture Results Along with the tested ar-
chitectures shown in the main paper, we include the perfor-
mances of a simple spatial downsampling to 64 x 64 for each
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Figure 1. Extended network architecture comparisons. We plot the accuracy of several baseline architectures on two tasks: hand gesture
recognition (left) and lip reading (right) on the test sets of the Cambridge Hand Gesture dataset and the Tulipsl dataset, respectively.
As baselines, we use RAW, difference camera, approximate event camera, naive spatial downsampling (NSD), naive spatio-temporal
downsampling (NSTD), binary and full precision CNN-only encoders (CNN), as well as the following RNN architecture: SRNN, MGU,
GRU, LSTM, genRNN, and PixeIRNN, each with 1- and 2-layer CNN encoders and binary or full 32 bit floating point precision. Note
that the memory plotted on the x-axis represents all intermediate features, per pixel, that need to be stored when running an input image
through the RNN. We do not count the network parameters in this plot, because they do not dominate the memory requirements and are

shared among all pixels.

frame, naive spatio-temporal downsampling which further
downsamples temporally by 16x, CNN-only encoder, our
starting architecture genRNN, and the synchronous event
camera approximation in the extended ablation on the
same Cambridge Hand Gesture Recognition dataset and the
Tulips1 lip reading dataset. Extended results can be seen in
Table 1 and Figure 1. We evaluated all baselines described
above on the hand gesture recognition task and lip reading
task. The figure shows the the Top-1 accuracy in addition
to the memory required by intermediate features of the re-
spective network. This memory footprint is normalized per
pixel and does not include the network parameters them-
selves, because these are shared across all pixels and, in the
binary case, add a negligible amount of memory. The inter-
mediate features are the bottleneck, especially for higher-
resolution sensors using small RNN architectures with bi-
nary weights. Each RNN baseline is tested with the one- or
two-layer CNN feature encoder as well as using full 32 bit
floating point precision and 1 bit binary features.

For the full-precision networks, all RNNs perform well.
Comparing the networks in the binary setting, PixelRNN
offers the best accuracy. Larger architectures, including
GRUs and LSTMs, do not perform well when used with
binary weights. This can be explained by the increasing
difficulty of reliably training larger RNN networks with
binary parameter constraints as the exploding gradient
problem worsens [5]. In highly quantized settings, popular
RNNSs like LSTMs may suffer due to excessive information
loss caused by binarization through many gates. Leaner
networks, such as SRNN and PixelRNN, better avoid this
issue and can be trained more robustly and reliably in these
settings.

Bandwidth Study. We include the statistics corresponding

to the bandwidth studies in the main paper for hand gesture
and lip reading in Table 2. Each experiment was run 10
times. We report mean and standard deviation. The larger
standard deviation of lip reading is due to the small dataset.

Bit depth of readout for quantized implementations. The
bit width can vary for the binary versions of the RNNs. Bi-
nary LSTM, GRU, and MGU architectures output the bi-
nary hidden state values as their outputs. However this lim-
its the quantized performance significantly. The SRNN and
PixeIRNN architectures have an additional output convo-
lution using the output of the CNN and the binary hidden
state. This additional gate allows for higher precision out-
put and leads to higher performance when working with the
quantized non-linearities.

Practically, PixeIRNN can be implemented with 2-bits
read out per value. The output in this case would be the bi-
nary CNN(x;) and binary h;_; concatenated. As there is no
non-linearity used in the calculation of the outputs o, in the
SRNN and PixelRNN, the convolution operation, (a linear
operation), can simply be absorbed into the fully connected
off-sensor decoder.

Larger Decoders. While we used a single linear layer as
our decoder, another model can be swapped in for a given
task. A larger decoder can boost performance, as shown
in table 3, however, enlarging the decoder does not solve
the original problem of decreasing the bandwidth readout
between the sensor and processor. In this work, we focus
on encoding as much information into a reduced bandwidth
through our PixeIRNN module, which can be used to com-
plement any off-sensor model.



Temporal output rate:  In Table 4, we show the per-
formance as we vary the temporal output rate. We found
that outputting once every K=16 frames offered balance be-
tween performance and compression.

Application to EgoGesture. EgoGesture is a bench-
marking dynamic hand gesture recognition dataset, contain-
ing 83 classes [2, 8]. It has 24,161 RGB-D gestures col-
lected in diverse indoor and outdoor settings. While the
performance of the binary version of 1CNN+PixelRNN is
limiting, our encoder at floating point precision can effec-
tively encode the information into a reduced bandwidth for
this challenging task. We convert the RGB data to grayscale
as our input to our encoder and use the ResNeXt back-
bone model from [6] for the off-sensor decoder. Our en-
coder can compress the readout bandwidth by 8 x and still
achieve 88.9% accuracy, while naive temporal downsam-
pling resulted in 74.5%. Table 5 presents further compar-
isons at various compression levels and highlights how ef-
fective our encoder is at retaining important features. While
this version of our encoder is at higher precision, this is
in line with the expected increased memory future sensor—
processors will host.

2. Additional Details
2.1. Additional Simulation Details

Training Details The Cambridge hand gesture dataset
has 900 videos while the Tulips dataset has 96 videos. In
both cases, we use a 80:10:10 train:validation:test split. As
they are small datasets, we utilize data augmentation tech-
niques. For each video, we select 16 evenly spaced frames
starting with the first frame. Input images are resized to
256 x 256. During training, an optional, random tempo-
ral offset is also applied to the train set, if available. For
videos with less than 16 frames, we randomly duplicate
a subset of the frames until 16 frames are available. We
also apply a random spatial offset to the training videos for
further augmentation. During training, we use the Pytorch
Adam optimizer and a cross entropy loss. All models were
trained for 300 epochs, or until convergence, with learning
rate sweeps from le — 1 to 1e — 4 and a learning rate sched-
uler that reduces when the loss and accuracy improvement
have plateaued. Best scores for all models were reported.

2.2. Additional SCAMP-5 Prototype Details

Memory Allocation. SCAMP-5’s analog and digital reg-
isters are limited in number and present different chal-
lenges. Analog registers cannot hold values for long periods
before decaying. The decay is exacerbated if one moves in-
formation from pixel to pixel such as in shifting an image.
We found using analog registers with a routine to refresh
their content to a set of quantized values inspired by [1]

helped circumvent some of the challenges. This allowed the
storage of binary weights for convolutions and the hidden
state for prolonged periods of time. The remaining memory
registers were used for performing computations and stor-
ing intermediate feature maps.

SCAMP-5 Protocol. We retrained PixelRNN with vary-
ing levels of Gaussian noise added prior to quantization
of the signal everywhere in the model. We then load the
trained binary model weights into two of the register planes
in SCAMP-5. Weight storage can be further optimized in
the future. The 16 image sequence for each test video is ex-
tracted from the same pre-processing as in simulation and
uploaded sequentially to SCAMP-5. The image is thresh-
olded according to a learned parameter in simulation and
subsequently binarized. To effectively use the whole sen-
sor, we split the sensor into a 4 x 4 grid of 64 x 64 blocks
of processing elements (PE) to perform 16 convolutions in
parallel. The CNN operation is illustrated in figure 2. The
output of the convolution at a single pixel is the 5 x 5 ker-
nel, element-wise multiplied by the local 5 x 5 image re-
gion, then summed. Since the weights and input signal
are both binary, the convolution operation can be calcu-
lated just by adding 1 or subtracting 1 from a running sum
held in an analog register. Where the weight AND signal
=1, we add 1, otherwise, we subtract 1. In practice, to in-
crease the signal-to-noise ratio and to circumvent some of
the effects of analog noise, we add and subtract intervals of
p = 10 to the analog register. In simulation, we used binary
regime {—1,1}. When stored in the digital bit registers on
SCAMP-5, weights and signals that are —1 are stored as
0, so the ‘multiplying’ operation in the binary convolution
becomes a XNOR operation, as opposed to the AND opera-
tion. The output of the convolution is then thresholded with
a learned parameter during training and binarized. This pro-
cess is used for the CNN as well as for the convolutions in
the RNN.

The RNN operation is shown in figure 3. The RNN uses
just 4 of the 16 available PEs as just 4 convolutions are
needed for the gate computations. At the beginning of each
video sequence, the hidden state is initialized to all ones,
and then the hidden state is updated and binarized each time
step. The outputs for each video, i.e. the encoded images
are saved out every 16 frames. We perform this process on
the whole dataset. We use the outputs of the train set to fine-
tune the off-sensor model, which is in this case a fully con-
nected layer. The SCAMP-5 outputs of the test set are then
fed into the fully connected layer and the class is predicted.
Adding Gaussian noise with mean 0 and standard deviation
0.6 helped approximate some of the noise in SCAMP-5.



Table 1. Network architecture comparison. We evaluate the accuracy of several baseline architectures on two tasks: hand gesture
recognition and lip reading. We show RAW, the difference camera, the event camera, naive spatial downsampling, CNN-only encoder, and
naive spatio-temporal downsampling, as well as the following RNN architecture: SRNN, MGU, GRU, LSTM, genRNN, and PixelRNN,
each with 1- and 2-layer CNN encoders and binary or full 32 bit floating point precision. As PixelRNN has better accuracy than the
genRNN and fewer operations and memory required, we chose PixelRNN to be our final architecture. In this table, we also list the number
of parameters for each model, which includes the CNN feature encoder and the respective RNN. The feature memory column lists the
memory footprint of all intermediate features that need to be computed during a forward pass through each network. This does not include
the model weights. Finally, the final column lists the number of values that are read out in total within a 16 frame sequence.

Hand Gesture

Lip Reading

# Model

Feature Memory in

Values Read Out

Model Name Top-1 Accuracy % Top-1 Accuracy % bytes per pixel .
(U bit/ 32 bit (1 bit /32 bid Params O bit) 32 bit (per 16 timesteps)
RAW —/58.89% —/60.00% 0 —/1.00 256 2 - 16 = 1,048,576

Difference Camera 1889%/ — 30.00%/ — 0 025/ — 642 .16=65536
Event Camera* 41.11% /1 — 50.00% / — 0 025/ — 65,536
Naive Spatial Downsampling —157.78% —/60.00% 0 —/0.25 65,536
CNN-only Encoder 64.44% / 85.56% 60.00% / 70.00% 401 2.00/ 64.00 65,536

Naive Spatio-temporal Downsampling —/52.22% —/60.00% 0 —/0.25 642 = 4,096

1 CNN + SRNN 81.11% / 94.44% 50.00% / 90.00% 451 2.38/76.00 4,096
1 CNN + LSTM 28.89% /91.11% 50.00% / 90.00% 601 3.38/108.00 4,096
1 CNN + GRU 58.89% /95.56% 60.00% / 80.00% 551 2.88/92.00 4,096
1 CNN + MGU 51.11% 7 92.22% 70.00% / 80.00% 501 2.63/84.00 4,096
1 CNN + genRNN (0,1) 58.89% / 94.44% 60.00% / 80.00% 553 3.00/96.00 4,096
1 CNN + genRNN (-1,1) 84.44% / 94.44% 80.00% / 80.00% 553 3.00/96.00 4,096
1 CNN + PixelRNN 85.56% / 97.78% 80.00% /100.00 % 501 2.75/ 88.00 4,096
2 CNN + SRNN 83.33% / 97.78% 60.00% / 100.00 % 852 4.38 /140.00 4,096
2CNN + LSTM 25.56% 1 97.78 % 50.00% / 100.00 % 1,002 5.38/172.00 4,096
2 CNN +GRU 65.56% /95.56% 70.00% / 100.00 % 952 4.88/156.00 4,096
2 CNN +MGU 55.56% / 97.78 % 60.00% / 90.00% 902 4.63/148.00 4,096
2 CNN + genRNN (0,1) 55.56% 1 95.56% 60.00% / 90.00% 954 5.00/160.00 4,096
2 CNN + genRNN (-1,1) 83.33% /95.56% 60.00% / 90.00% 954 5.00/160.00 4,096
2 CNN + PixelRNN 87.78% 1 97.78% 70.00% / 100.00% 902 4.75/152.00 4,096

Table 2. Bandwidth Study Statistics. We report the numbers corresponding to the bandwidth figures in the main paper. We see we can
potentially continue to decrease the bandwidth past 4,096 values. The number of values read out is modulated by a maxpooling operation
prior to readout, resulting in the collection of readout values shown below.

Encoder Number of values read out
4096 1024 456 256 164 114 84 64 16

Hand Gesture
ICNN+PixelRNN 84.6+3.7 81.6 £ 4.8 77.7T+4.3 72.3 £5.7 63.9+5.9 61.3 £5.2 55.5 £ 4.6 43.14+4.4 21.0+ 3.9
2CNN+PixeRNN | 85.2 + 2.3 78.1+25 65.0 4.3 53.2 £3.5 49.5 +4.3 43.2+£5.5 37.7+£5.9 34.1+4.9 22.1+5.1

Lip Reading
1CNN+PixeIRNN | 80.8 + 6.7 72.5+6.2 60.0+7.4 43.3+10.7 36.7+6.5 383+11.9 31.7+11.9 25.0+10.0 27.5+8.7
2CNN+PixelRNN 73.0 £ 6.7 66.0 £ 10.7 57.0£9.5 49.0 £9.9 47.0 £ 8.2 45.0 £ 9.7 45.0 £ 8.5 38.0 £ 10.3 20.0 +9.4

Table 3. Larger Decoders. Adding processing to the decoder can
boost performance but does not reduce the readout bandwidth. In
the 2 linear layer decoder, the hidden layer is 64 neurons whereas

the 1 linear layer goes straight to the number of classes.

Encoder Decoder  Hand Gesture  Lip Reading
RAW 2 linear 78.8% 60.0%
DIFF 2 linear 74.4% 60.0%

1CNN+PixelRNN 2 linear 87.8% 85.6%

Table 4. Temporal output ablation. Mean accuracy of outputting
one every K frames using the binary 1CNN+PixeIRNN model.

Table 5. Application to EgoGesture. Shown here is the read-
out compression level and the corresponding performance on the
EgoGesture Hand Gesture Recognition Dataset that contains 83

gesture classes. The off-sensor model in all cases is the ResNeXt
backbone model from [6].

4% 8% 18x 36
Naive Temporal Downsampling 82.4% 74.5% 63.6% 52.1%
ICNN+PixelRNN 91.1% 889%  83.6% 71.8%

lutional networks on pixel processor arrays. In Computer Vi-
sion — ECCV 2020: 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part XXIX, page 488-503,

K=4 K=8 K=12 K=16 K=20 K=24

Hand Gesture 86.0 84.8 84.1 84.2 82.5 80.8

Lip Reading 80.0 79.0 80.0 80.0 76.0 75.0
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