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A. Further Details on Experiments
A.1. Datasets and Metrics
We use two datasets for validating our method: SegmentMeIfYou-
Can [9] and BDDAnomaly [24]. SegmentMeIfYouCan relies on
the semantic annotations of Cityscapes [13], and offers a public
benchmark with a hidden test set for anomaly segmentation, where
the goal is to segment objects that are not present on Cityscapes.
Annotations are binary, since each object is either known or un-
known. BDDAnomaly is a reorganization of BDD100K [71],
where all images containing the classes train, motorcycle and bi-
cycle have been discarded from the training and validation set to
create an open-world test set. Since ground truth data is available
for this dataset, we use it for ablation studies and experiments on
class similarity. Additionally, we report results on a further mod-
ification of BDDAnomaly proposed by Besnier et al. [4], which
we call BDDAnomaly∗, where only train and motorcycle are con-
sidered as unknown classes. For metrics computation, we used
the official evaluation pipeline of SegmentMeIfYouCan to enforce
fairness and reproducibility2. We decided to not use the area under
the ROC curve (AUROC), because recently several papers showed
its limitations [20, 26, 66], as two models with the same perfor-
mance may differ widely in terms of how clearly they separate
in-distribution and out-of-distribution samples. In general, these
works argue that AUROC is not a fair metric for comparing differ-
ent approaches. This might be the reason why the official evalua-
tion tool of SegmentMeIfYouCan, which we use in this work, does
not report it.

A.2. Experiments on Hyperparameters
Hyperparameters search is usually a challenging problem when
it comes to training neural networks. Usually, they are chosen
empirically and only the configuration that works best is reported
on the paper. In the following, we try to give some insight on
our choice of hyperparameters and the reasoning behind them. We
provide an analysis on the four hyperparameters (𝜉, 𝛿, 𝜏, and 𝜂) in
the following.

As discussed in Sec. 3.2 of the main paper, in the paragraph
dedicated to the contrastive decoder, 𝜉 is the radius of the hyper-
sphere created by the objectosphere loss [15] in Eq. (9). In princi-
ple, this hyperparameter could take any value. However, we pair
the objectosphere loss to the contrastive loss [11] in Eq. (8), which
aims to distribute all feature vectors on the unit sphere. Thus, we
expect that any choice of 𝜉 that is different from 1 would harm
performance, since it would reduce the synergy between the two
loss functions operating on the same decoder. We report an exper-
iment about this in Tab. 7. When 𝜉 < 1, the performance is not
dramatically harmed because the objectosphere loss aims to make
the norm of the features belonging to the known pixels greater than
𝜉. Thus, the two losses do not work against each other. In contrast,
when 𝜉 > 1, the two loss functions try to achieve two tasks which

2https://github.com/SegmentMeIfYouCan/road-anomaly-benchmark

Table 7. Anomaly segmentation results on BDDAnomaly with dif-
ferent choices of the parameter 𝜉.

Approach AUPR [%] ↑ FPR95 [%] ↓
ContMAV (𝜉 = 0.75) 92.2 18.7
ContMAV (𝜉 = 1.25) 83.4 55.2

ContMAV (𝜉 = 1) 96.1 6.9

Table 8. Anomaly segmentation results on BDDAnomaly with dif-
ferent choices of the parameter 𝛿.

Approach AUPR [%] ↑ FPR95 [%] ↓
ContMAV (𝛿 = 0.4) 86.6 41.2
ContMAV (𝛿 = 0.8) 89.1 30.1

ContMAV (𝛿 = 0.6) 96.1 6.9

are incompatible (features on the unit circle and, at the same time,
with norm greater than 1), and performance suffers.

The threshold 𝛿, which we also introduced in Sec. 3.2, in the
paragraph dedicated to the post-processing, is our “unknown-ness
threshold”. In fact, we obtain a score 𝑠unk ∈ [0, 1] and have to
decide whether a pixel belongs to an unknown category based on
this score. The score is given by
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where 𝑠
seg
unk and 𝑠cont

unk are the scores coming from the semantic and
the contrastive decoders, respectively. Notice that, since the fi-
nal score is a standard mean of the two, setting the threshold to
a low value would make us label a pixel as unknown also in the
case in which only one score is high but the other is not. This
would create a lot of false positives, and we expect performance
aligned with models G and J in Tab. 5 of the main paper. Those
two models, in fact, only have one active decoder, and setting a
low 𝛿 causes a similar behavior. Setting the threshold too high
is, in contrast, achievable only when both decoder heads are very
confident in their prediction of unknown, and it could cause a high
number of false negatives. Thus, we choose 𝛿 = 0.6, that is a good
compromise and provides good results (see Tab. 8).

We do not optimize the temperature parameter of the con-
trastive loss 𝜏 and perform all experiments with 𝜏 = 0.1, as sug-
gested by Chen et al. [11].

The hyperparameter 𝜂, also introduced in Sec. 3.2, in the para-
graph dedicated to the post-processing, does not affect the predic-
tion of a pixel as unknown, but it plays a role in the class discov-
ery. In fact, it represents the minimum distance needed to decide
whether a feature categorized as unknown is a class of its own
and does not belong to any of the already-discovered new classes.
Setting this threshold heavily depends on the data distribution. A



Table 9. Class discovery results on BDDAnomaly with different
choices of the parameter 𝜂. For each class of interest, the discov-
ered one with greater IoU is chosen and reported.

Approach mIoU [%] ↑
𝑁𝑈Train Motorcycle Bicycle

ContMAV (𝜂 = 0.3) 0.0 23.4 0.0 1
ContMAV (𝜂 = 0.9) 30.5 31.1 18.9 12

ContMAV (𝜂 = 0.6) 62.4 62.2 56.8 4

very high threshold would create a lot of classes, and its useful-
ness would be limited. On the other hand, a low threshold would
put all classes together, providing nothing more than an anomaly
segmentation. We report results in Tab. 9, where we also report
the number 𝑁𝑈 of new classes created, for which the ground truth
value is 3 (i.e., the number of unknown classes in BDDAnomaly).

A.3. Further Details on Anomaly Segmentation

In Sec. 4 of the main paper, we reported extensive experi-
ments on SegmentMeIfYouCan [9] and BDDAnomaly [24].
SegmentMeIfYouCan is a public benchmark for anomaly seg-
mentation, with a hidden test set and a public leaderboard. Our
method, called ContMAV, ranks first overall on three out of
five metrics, namely FPR95, PPV and mean F1, and it ranks
fourth on AUPR and sixth on sIoU. Further details and baselines
results can be found on SegmentMeIfYouCan’s official website:
https://segmentmeifyoucan.com/leaderboard.
Besnier et al. [4] proposed a modification of BD-
DAnomaly [24], where only two classes (train and
motorcycle) are considered as unknown. We call this
dataset BDDAnomaly∗. Differently from BDDAnomaly,
the images containing bicycle are not discarded from the
training and validation set, but are kept and bicycle is
considered a known class. We test our method also on
this dataset, using the same training details and parameters
discussed above. We report our results in Tab. 10.

A.4. Further Details on Class Similarity

In Sec. 4.3 of the main paper, we reported our experiment
on class similarity, and mentioned the creation of a lookup
table in which each class is assigned a ground truth label
indicating its most similar category. We chose the most
similar class based on the relevance in an autonomous driv-
ing scenario. For example, truck is paired to bus since one
could expect a similar behavior between these two traffic
participants. Some classes, such as sky, are not assigned
any label for the most similar category. The lookup table is
reported in Tab. 11. For this experiment, we decided to use
BDDAnomaly∗ because we did not find a valid correspon-
dence for the class bicycle. The only vehicle that belongs
to known classes is car, and in fact our method on BD-
DAnomaly achieves, for bicycle, a 43.2% similarity score

Table 10. Anomaly segmentation results on BDDAnomaly*.

Approach AUPR [%] ↑ FPR95 [%] ↓
MaxSoftmax [23] 80.1 63.5
Background [6] 75.3 68.1

MC Dropout [16] 82.6 61.1
ODIN [34] 81.7 60.6

ObsNet + LAA [4] 82.8 60.3

ContMAV (ours) 92.9 43.9

Table 11. Look-up table for class similarity. The unknowns are
specified in the context of BDDAnomaly∗.

Category Most Similar Type

Road Sidewalk stuff
Sidewalk Road stuff
Building Wall stuff

Wall Fence stuff
Fence Wall stuff
Pole Sign stuff
Light Sign stuff

Vegetation Terrain stuff
Terrain Vegetation stuff

Sky – stuff
Person Rider thing
Rider Person thing
Car Truck thing

Truck Bus thing
Bus Truck thing

Bicycle – thing

Train Truck thing, unknown
Motorcycle Car thing, unknown

with car. A more modern dataset, with more vehicle classes
such as electric scooters, would provide better candidates
for class similarity.

A.5. Architectural Choices

As reported in Sec. 3.1, we used a modified version of
ResNet34. Still, our contribution does not include any of
the modules presented there, such as the NonBottleneck-1D
block or the average pyramid pooling module, whose con-
tributions are reported in the related papers [54, 75]. There-
fore, we do not provide ablation studies on these compo-
nents, but rather all of our models and ablations use them.

B. Further Details on the Contrastive Decoder
The contrastive decoder, which we explain in details
in Sec. 3.2, is optimized with a combination of two loss
functions, namely the objectosphere and the contrastive
loss. Fig. 3 intuitively shows the idea behind it, and what
the ideal output in the 2D case would be. However, the



Table 12. Architectural Efficiency

Approach GFLOPs ↓ Training Parameters ↓
Maskomaly [23] 937 215M

Mask2Anomaly [6] 258 23M

ContMAV (ours) 84 48M

feature vectors that the contrastive decoder predicts are 𝐾-
dimensional, where 𝐾 is the number of known classes (i.e.,
19 in our case). In order to verify whether the output of
the decoder is aligned with our expectation, we define two
thresholds 𝜁 and 𝜌. Then, given 𝒇 𝑑𝑝 , i.e., the feature pre-
dicted at pixel 𝑝 from the contrastive decoder, we want
1 − 𝜁 < | | 𝒇 𝑑𝑝 | |2 < 1 + 𝜁 for all 𝒇 𝑑𝑝 whose ground truth label
is a known class, and | | 𝒇 𝑑𝑝 | |2 < 𝜌 for all 𝒇 𝑑𝑝 whose ground
truth label is an unknown class. The former means that the
norms of the vectors belonging to known classes should be
in a “tube” of radius 𝜁 around 1, which is our 𝜉 parameter
as explained in Tab. 7. The latter means that the norms of
the vectors belonging to unknown classes (which, at train-
ing time, are the unlabeled portions of the image), should
be smaller than 𝜌. We choose 𝜁 = 0.2 and 𝜌 = 0.4, and we
find that 86.5% of the vectors belonging to known classes
fall into the tube, and that 79.9% of the vectors belonging
to unknown classes are smaller than 𝜌. This verifies that the
output is aligned to our expectation. To visually show the
result, we would need to apply a dimensionality reduction
approach such as principal component analysis. However,
linear dimensionality reduction techniques always lead to
loss of information, and the new dimensions may offer no
concrete interpretability.

C. Architectural Efficiency

As pointed out in Sec. 3.1, we designed our neural net-
work in order to be lightweight and faster at inference time.
The architecture design choices explained in Sec. 3.1 al-
low inference on an image at 10 Hz. Additionally, we
report the number of parameters and the GFLOPs of our
model together with two state-of-the-art models from the
SegmentMeIfYouCan public benchmark with code avail-
able in Tab. 12. We show that our architecture is competitive
and performs very well in terms of efficiency.

D. Qualitative Results

We provide further qualitative results on the validation set
of SegmentMeIfYouCan and the test set of BDDAnomaly
in Fig. 5 and Fig. 6, respectively. Additionally, we report
qualitative results on the test set of BDDAnomaly for class
similarity in Fig. 7.

E. Limitations and Future Works
As shown in the various experiments, our approach
achieves state-of-the-art results on different datasets on
both, anomaly segmentation and novel class discovery.
Still, our approach presents some limitations which offer
interesting avenues for future work in order to make the ap-
proach more robust and performing. In particular, the se-
mantic decoder builds a mean activation vector, or average
class prototype, for each class and the dimension of this de-
scriptor is equal to the number of known classes. When
not many classes are available at training time, this descrip-
tor collapses to a few dimensions, which might be not de-
scriptive enough for ensuring a reliable novel class discov-
ery where many new classes can be found. The contrastive
decoder instead leverages the unlabeled portions of the im-
age as unknowns available at training time to train the ob-
jectosphere loss (basically following the concept of “known
unknowns” introuced by Bendale et al. [2]), and would suf-
fer from a fully labeled dataset where no pixel is left with
no ground truth annotation. Additionally, we provide open-
world semantic segmentation (i.e., anomaly segmentation
and novel class discovery) only, but no instance are seg-
mented. An interesting research avenue is to extend this
work in the direction of open-world panoptic segmentation.
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Figure 5. Anomaly segmentation results from the validation set of SegmentMeIfYouCan. We show the input RGB overlayed with the
ground truth unknown mask (a), the prediction of our closed-world model (b), and the prediction of our approach for open-world seg-
mentation (c). In the open-world prediction, the unknown class is shown in red. Notice how the two models, that are both trained on
CityScapes, perform similarly on known classes, demonstrating that our approach does not degrade closed-world performance.
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Figure 6. Anomaly segmentation results from the test set of BDDAnomaly. We show the input RGB overlayed with the ground truth
unknown mask (a), the prediction of our closed-world model (b), and the prediction of our approach for open-world segmentation (c). In
the open-world prediction, the unknown class is shown in red. Notice how the two models, that are both trained on BDDAnomaly, perform
similarly on known classes, demonstrating that our approach does not degrade closed-world performance.
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Figure 7. Class similarity results from the test set of BDDAnomaly. We show the input RGB overlayed with the ground truth unknown
mask (a) and the prediction of our class similarity pipeline (b). In the open-world prediction, the unknown class is shown in red, and the
overall semantic segmentation is shown in transparency.



Figure 8. Screenshot of the top methods in the public leaderboard of SegmentMeIfYouCan, taken on November 21st 2023. Our method,
ContMAV, is the top approach for FPR95, PPV, and mean F1. To preserve anonymity, paper and code will be attached to the benchmark
submission upon acceptance.


