
FedUV: Uniformity and Variance for Heterogeneous Federated Learning

Supplementary Material

1. FedUV Pseudocode

Algorithm 1 PyTorch-like pseudocode of FedUV

n classes: number of classes
fθ: local model (outputs predictions ŷ and representa-
tions of encoder z)
µ := 1 (strength of hyperspherical uniformity regular-
ization)
λ := n classes / 5 (strength of variance regularization)

Cross-entropy loss
CELoss = torch.nn.CrossEntropyLoss()

Softmax function
softmax = torch.nn.Softmax(dim=1)

dimension-wise probability distribution of ideal batch
c = torch.eye(n classes).std(dim=0).mean().item()

for x, y in mini batch:
ŷ, z = fθ(x)

Cross-entropy loss
ce loss = CELoss(ŷ, y)

Hypershperical uniformity regularization
pdist z = torch.pdist(z, p=2).pow(2)
sigma = torch.median(pdist z[pdist z != 0])
u loss = pdist z.mul(-1/sigma).exp().mean()

Variance regularization
ŷ = F.one hot(ŷ, num classes=n classes)
p̂ = softmax(ŷ.float())
v loss = torch.mean(F.relu(c - p̂.std(dim=0)))

Total loss
loss = (ce loss + µ * u loss + λ * v loss)

Optimization
loss.backward()
optimizer.step()

2. Details on dataset
There are two main settings across our six datatsets. The
first setting is label-shift, in which clients hold data of un-
balanced classes, and the second setting is feature-shift,
in which clients hold data from unbalanced features. The
label-shift setting is simulated through the Dirichlet distri-
bution, as is common in many FL studies. In the Dirichlet
distribution, the α parameter influences the shape and con-
centration. We create a D-vector for each client, defined by
this distribution, and use the distribution to represent data
proportions per class. The feature-shift setting is not simu-
lated, as we use real data that come from different sources.
We verify that there are distributional shifts.

We show the feature and label distributions for included
all datasets. The feature distribution is shown as a histogram
of the average pixel value of each sample for each client.
We set κ = 10 for the label-shift datasets, and κ = 4 for
the domain-shift datasets following the available domains.
The label distrbition is shown as a heatmap with the x-axis
representing the client number, y-axis representing the class
number, and the intensity of color showing how many data
samples are available.

2.1. Label-shift datasets

(a) α = 0.01

(b) α = 1.0

Figure 1. Feature and label distribution of the STL-10 dataset

(a) α = 0.01

(b) α = 1.0

Figure 2. Feature and label distribution of the CIFAR-100 dataset

(a) α = 0.01

(b) α = 1.0

Figure 3. Feature and label distribution of the Tiny-ImageNet
dataset

2.2. Feature-shift datasets

Figure 4. Feature and label distributions of the PACS dataet

Figure 5. Feature and label distributions of the HAM10000 dataet

Figure 6. Feature and label distributions of the Office-Home
dataet

3. The Small CNN model architecture

Small CNN Architecture

Conv. 3 x 3, 64-BN-ReLu
Conv. 1 x 1, 64-BN-ReLu
Conv. 3 x 3, stride 2, 128-BN-ReLu
Conv. 3 x 3, 128-BN-ReLu
Conv. 1 x 1, 128-BN-ReLu
Conv. 3 x 3, stride 2, 256-BN-ReLu
Conv. 3 x 3, 256-BN-ReLu
Conv. 1 x 1, 256-BN-ReLu
Global average pooling
FC. 256-BN-ReLu x2
Logits

Table 1. CNN architecture on STL-10 and PACS

4. Regularization Strength Tuning
In real-world FL applications, hyperparameter tuning may
not be a realistic approach. Every step in hyperparameter
tuning requires many local epochs and many aggregation
rounds. This is a heavy burden for local devices. Because of
this constraint, we train the Small CNN model (Table 1) on
the CIFAR-10 dataset and report the best hyperparameters
for each method based on our custom validation set (90-10
split from original training dataset). Table 2 and Table 3
show the results of the hyperparameter tuning on α := 0.1
and α := 1.0 on the CIFAR-10 dataset, respectively. Note
that when the strength of regularization becomes too strong
for any method, validation accuracy drops as convergence
becomes more difficult.

Method α µ λ Acc.

FedAvg 0.01 - - 34.7%

FedProx 0.01 0.001 - 35.5%
FedProx 0.01 0.01 - 35.4%
FedProx 0.01 0.1 - 32.8%
FedProx 0.01 1.0 - 32.2%

MOON 0.01 0.1 - 35.3%
MOON 0.01 1.0 - 35.7%
MOON 0.01 5.0 - 31.1%
MOON 0.01 10.0 - 32.0%

FedUV 0.01 0.1 n classes/8 45.3%
FedUV 0.01 0.1 n classes/4 45.1%
FedUV 0.01 0.1 n classes/1 44.4%
FedUV 0.01 0.5 n classes/8 45.4%
FedUV 0.01 0.5 n classes/4 37.7%
FedUV 0.01 0.5 n classes/1 35.8%
FedUV 0.01 1.0 n classes/8 45.2%
FedUV 0.01 1.0 n classes/4 45.7%
FedUV 0.01 1.0 n classes/1 43.1%

Table 2. Hyperparameter tuning for methods
on CIFAR-10 (α := 0.01)

Method α µ λ Acc.

FedAvg 1.0 - - 72.4%

FedProx 1.0 0.001 - 73.5%
FedProx 1.0 0.01 - 71.4%
FedProx 1.0 0.1 - 68.5%
FedProx 1.0 1.0 - 67.5%

MOON 1.0 0.1 - 72.5%
MOON 1.0 1.0 - 74.7%
MOON 1.0 5.0 - 67.5%
MOON 1.0 10.0 - 66.3%

FedUV 1.0 0.1 n classes/8 74.0%
FedUV 1.0 0.1 n classes/4 74.5%
FedUV 1.0 0.1 n classes/1 73.1%
FedUV 1.0 0.5 n classes/8 75.0%
FedUV 1.0 0.5 n classes/4 75.3%
FedUV 1.0 0.5 n classes/1 73.1
FedUV 1.0 1.0 n classes/8 75.1%
FedUV 1.0 1.0 n classes/4 74.7%
FedUV 1.0 1.0 n classes/1 74.3%

Table 3. Hyperparameter tuning for methods
on CIFAR-10 (α := 1.0)

5. Additional results

Table 4 shows results for FedProto, FedDyn, Scaffold. Note
that these methods also change the aggregation process.

STL STL CIFAR CIFAR Tiny Tiny PACS HAM Office
Method (.01) (1.0) (.01) (1.0) (.01) (1.0)

FedAvg 27.6 68.5 51.6 58.3 37.5 40.2 61.9 73.3 42.2
SCAFFOLD 24.7 68.7 50.3 60.8 39.3 43.1 60.1 73.7 42.1
FedDyn 22.8 65.7 50.7 59.7 38.3 41.3 63.1 72.4 41.1
FedProto 30.1 66.2 49.5 54.2 36.8 38.5 56.7 71.6 42.1
FedUV 30.4 68.5 55.7 59.1 40.3 43.2 65.9 73.9 45.4

Table 4. Additional Baselines

FedProto transfers class prototype features, while SCAF-
FOLD and FedDyn uses an additional term in aggregation.
FedUV, MOON, FedProx, and Freeze follow FedAvg ag-
gregation. These baselines do not change our conclusion.
FedUV is unique in that it does not rely on the global model
for regularization, rather focusing on emulating the IID
setting regardless of the current non-IIDness. The global
model is not a good source of regularization when data is
highly non-IID.

FedAvg FedUV
Model STL Tiny PACS Office STL Tiny PACS Office

Small CNN 27.6 23.4 61.9 41.2 30.4 24.2 65.9 42.9
ResNet-18 30.2 36.9 54.8 48.7 29.6 38.4 59.8 49.5
ResNet-50 27.2 37.5 47.2 42.2 28.9 40.3 49.3 45.4

Table 5. Model ablation

Ablations for architectures and datasets are shown in Ta-
ble 5. With the exception of Tiny Imagenet, most datasets
are quite small. This small data size is likely the reason
the larger ResNet models underperform. Nevertheless, Fe-
dUV performs better than FedAvg across all but one (STL
— ResNet-18) settings.

STL-10 (α = 0.01) STL-10 (α = 1.0)
Method λ=1.0 λ=2.5 λ=5.0 λ=1.0 λ=2.5 λ=5.0

No Hinge 29.7 29.7 28.4 67.9 67.6 68.1
Squared Hinge 29.2 27.1 26.8 67.5 67.8 67.3
Hinge (FedUV) 30.1 30.4 31.1 66.6 67.1 67.9

Table 6. Performance across different regularization strength λ

Table 6 shows results for no hinge, squared hinge, and
linear hinge (FedUV). Our goal with hinge loss is to re-
move dimensions that have large variance (negative values)
so it does not overpower dimensions with low variance. No
hinge does not remove negative values and Squared hinge
turns negative values into positive. This may explain the
drop in performance for α=0.01.

	. FedUV Pseudocode
	. Details on dataset
	. Label-shift datasets
	. Feature-shift datasets

	. The Small CNN model architecture
	. Regularization Strength Tuning
	. Additional results

