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1. Overview

In this supplementary material, we first provide additional
experiments to evaluate our Multi-condition Motion Latent
Diffusion Model (MCM-LDM) in Sec. 2. Then, we provide
a comprehensive explanation of our quantitative metrics in
Sec. 3. We further introduce the details of our user study in
Sec. 4. Lastly, we provide the details of our Multi-condition
Extraction in Sec. 5.

2. Additional Experiments

2.1. Importance of Diffusion in Latent Space

In this section, we further investigate the impact of the dif-
fusion process in the latent space (Table 1: ‘Ours w Latent
Space’) and the original motion space (Table 1: ‘Ours w
Motion Space’). In motion space diffusion, we directly ap-
ply the diffusion process to the original motion features in-
stead of the latent features. Results demonstrate that the
motion space model excels in preserving motion content
(CRA improves by 14.43) compared to the latent space
model. However, there is a substantial decrease in style
representation performance (SRA decreases by 8.34) and
a slight decline in motion quality (FMD decreases by 1.91).
These results demonstrate that the motion space model pri-
oritizes content preservation, leading to suboptimal style
transfer. Moreover, this model consumes significant com-
putational resources, taking an average of 7.690 seconds
to generate 60 frames of motion, while our latent space
model only requires 0.220 seconds, making it nearly 35
times faster. Thus, we choose to implement our method
in the latent space as it strikes a balance between style and
content, significantly improving style transfer efficiency.

*,† Corresponding authors

Methods FMD↓ CRA↑ (%) SRA↑ (%) TSI↓
Ours w Motion Space 29.60 50.18 49.66 0.36
Ours w Latent Space 27.69 35.75 58.00 0.40

Table 1. Comparison with diffusion in motion space. The re-
sults show that our MCM-LDM implemented in latent space can
better transfer the style.

2.2. More Guidance Strategies in Multi-condition
Denoiser

As shown in Table 2, we further experiment with adding our
content fc, trajectory ft, and style fs to our Multi-condition
Denoiser Eθ as primary or secondary conditions, resulting
in four more guidance strategies. Note that the primary con-
ditions guide the denoising process in Eθ by concatenating
with noise late features. The secondary conditions guide the
denoising process in Eθ by incorporating into our Eθ using
AdaLN-Zero [7]. For example, we experiment to treat all
conditions as primary conditions (Table 2: ID=1), or as sec-
ondary conditions (Table 2: ID=4), and find that all metrics
show a decrease compared to our method (Table 2: ID=5).
The results indicate that our method can achieve a balanced
performance only when content fc is treated as the primary
condition, and trajectory ft and style fs are treated as the
secondary conditions to guide the denoising process.

2.3. Classifier-free Parameters

In this section, we conduct experiments on the parameters
of classifier-free diffusion guidance [5]. As shown in Ta-
ble 3, we initially change the dropout ratio (p) of the train-
ing none-style model from 0.05 to 0.45 and observe an up-
ward trend in the FMD, CRA, and TSI metrics, while the
SRA metric shows a downward trend. We also experiment
with adjusting the guidance scale (λ) from 4.5 to 1.0 and
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Figure 1. Results of style control. The results show that increasing the scale from 0.5 to 2.5 gradually strengthens the style, while further
increases have minimal impact on style strength.

Pri. Sec. FMD↓ CRA↑ (%) SRA↑ (%) TSI↓
1 fc, ft, fs – 46.71 22.00 55.55 0.66
2 fc, ft fs 33.44 29.50 62.11 0.58
3 fc, fs ft 29.65 33.56 59.33 0.45
4 – fc, fs, ft 38.74 32.87 43.22 0.49

5 fc fs, ft 27.69 35.75 58.00 0.40

Table 2. Experiments of guidance strateges in Eθ . ‘Pri.’ repre-
sents the primary conditions, while ‘Sec.’ represents the secondary
conditions. When content fc is treated as the primary condition,
while trajectory ft and style fs are treated as the secondary con-
ditions to guide the denoising process, our method achieves better
performance.

observe the same trend. We further validate the control of
style using classifier-free guidance through the selection of
scales during inference, as shown in Fig. 1. The visualiza-
tion supports the effectiveness of classifier-free guidance in
achieving user-friendly style transfer. To maintain balanced
performance, we ultimately choose p=0.25 and λ=2.5.

2.4. Importance of the MotionCLIP as Our Style
Extractor

In this section, we further investigate the reasons behind our
choice of MotionCLIP [11] over a simple pre-trained Au-
toEncoder as our Style Extractor. The training process of
MotionCLIP involves aligning the motion latent space with
the text and image CLIP [9] spaces through the use of text
loss and image loss. In order to assess the importance of this
alignment for our model, we retrain a MotionCLIP variant
without text loss and image loss, which essentially functions

Classifer-free FMD↓ CRA↑ (%) SRA↑ (%) TSI↓Dropout Scale

p = 0.05 λ = 2.5 31.22 33.00 61.22 0.50
p = 0.15 λ = 2.5 30.93 32.43 62.33 0.45
p = 0.25 λ = 2.5 27.69 35.75 58.00 0.40
p = 0.35 λ = 2.5 29.73 36.68 55.88 0.40
p = 0.45 λ = 2.5 27.81 36.31 55.55 0.37

p = 0.25 λ = 1.0 32.61 45.43 42.11 0.29
p = 0.25 λ = 1.5 28.96 40.12 49.77 0.33
p = 0.25 λ = 2.5 27.69 35.75 58.00 0.40
p = 0.25 λ = 3.5 29.58 31.43 61.33 0.46
p = 0.25 λ= 4.5 30.50 28.56 62.11 0.51

Table 3. Evaluation of the classifier-free parameters dropout
p and scale λ. For balanced performance, we ultimately choose
p=0.25 and λ=2.5.

as a basic AutoEncoder (AE). The results, as presented in
Table 4, demonstrate a decrease in the SRA metric. This
decrease indicates that MotionCLIP, which aligns with the
Clip space of text and images, can more effectively extract
style features, thereby enhancing the effectiveness of our
method.

2.5. Evaluation of the Dimensionality Reduction in
StyleRemover

In this section, we further experiment with three dimension-
ality reductions in our StyleRemover. We reduce the di-
mensionality of the content features from 7x256 to 6x256,
5x256, and 4x256, respectively. The dimensionality reduc-
tion aims to decrease the amount of information in the con-



Methods FMD↓ CRA↑ (%) SRA↑ (%) TSI↓
Ours w AE 29.78 33.75 52.33 0.45
Ours w MotionCLIP 27.69 35.75 58.00 0.40

Table 4. Comparison with AE as our Style Extractor. The re-
sults show that using MotionCLIP as our Style Extractor enables
better capturing of style features.

Dimensions FMD↓ CRA↑ (%) SRA↑ (%) TSI↓
6x256 27.69 35.75 58.00 0.40
5x256 27.85 34.18 58.88 0.40
4x256 28.48 35.06 59.33 0.40

Table 5. Evaluation of the dimensionality reduction in StyleRe-
mover. We experiment with reducing the dimensionality of the
content features in StyleRemover from 7x256 to 6x256, 5x256,
and 4x256, respectively. We reduce the dimensionality to 6x256,
which achieves the best FMD metric, representing the highest
overall motion quality.

tent features and achieve style removal. As shown in Ta-
ble 5, as we reduce the dimensionality more, the style per-
formance improves (SRA metric increasing), but at the cost
of decreased content preservation and motion quality (CRA
and FMD metric decreasing). To achieve a more balanced
style transfer effect, we reduce the dimensionality to 6x256,
which achieves the best FMD metric.

2.6. Evaluation of Sampling Strategy and Denoising
Steps

As shown in Table 6, we experiment with DDIM and
DDPM sampling strategy and different denoising steps of
DDIM. The results show that DDIM yields better results
than DDPM in our context. When using DDPM sampling,
we notice a jitter in the stylized motions, which deteriorates
all our metrics. The Content Recognition Accuracy (CRA)
score falls from 35.75 to 21.50, and SRA drops from 58.00
to 26.55. This jitter might be attributed to error buildup
in DDPM sampling. While both DDPM and DDIM are
diffusion-based generative models, the key difference lies in
sampling strategies. DDPM’s continuous Markov sequence
sampling can lead to error accumulation and potential qual-
ity degradation, whereas DDIM’s skip-step approach miti-
gates this issue, resulting in higher-quality stylized motion
generation.

Furthermore, the results of different DDIM denoising
steps show that fewer steps (reducing 50 to 5) deteriorate the
motion quality (with metrics like Fréchet Motion Distance
(FMD) worsening from 27.69 to 29.46.). More steps (in-
creasing to 500) slightly improve certain metrics like Style
Recognition Accuracy (SRA) from 58.00 to 59.00 but at a
higher computational cost. The choice of 50 steps repre-
sents our best balance between quality and efficiency.

A questionnaire survey on the quality of arbitrary 
motion style transfer

Arbitrary motion style transfer is similar to image style transfer. The style of a 
style motion is transferred to the content motion so that the generated stylized 
motion can retain the content of the content motion (running, jumping, etc.) 
and also show the style of the style motion ( bending over, etc.). We give a total 
of 32 style transfer cases. The input of each case is a style motion and a content 
motion, and the output is a stylized motion. Please rate the motion based on 
the following three evaluation indicators.

Realism: The degree of realism in generating stylized motion, from low to high 
(1-5)
Content Preservation: The degree to which the stylized motion is generated to 
preserve the content of the content motion, compared with the content motion, 
from low to high (1-5)
Style Performance: The degree to which the generated stylized motion 
expresses the style of style motion, compared with style motion, from low to 
high (1-5)

Input: Style Motion Input: Content Motion Output: Stylized Motion

Realism

Content Preservation

Style Performance

1 2 3 4 5

1. 

Figure 2. User interface in our user study. Users need to rate
each stylized motion on three metrics: Realism, Content Preserva-
tion, and Style Performance.

Sampling Strategy Denoising Steps FMD↓ CRA↑ (%) SRA↑ (%) TSI↓
DDIM 5 29.46 34.81 58.11 0.42
DDIM 50 27.69 35.75 58.00 0.40
DDIM 250 27.37 34.50 59.55 0.40
DDIM 500 27.99 34.25 59.00 0.40

DDPM 1000 145.05 21.50 26.55 0.80

Table 6. Evaluation of sampling strategy and denoising steps.
The results show that DDIM sampling strategy is more compatible
with our arbitrary motion style transfer task. We set the denoising
steps to 50 to achieve a balance between effectiveness and compu-
tational efficiency.

In general, we chose the DDIM sampling strategy with
50 steps as it balances motion quality and computational
efficiency.



Methods FMD↓ CRA↑ (%) SRA↑ (%) FSF↓
Motion Puzzle [6] 166.36 24.36 62.01 1.41

Ours 89.00 31.08 41.11 1.00

Table 7. Evaluation on Xia [12] test set. The results show that our
MCM-LDM outperforms Motion Puzzle in terms of FMD, CRA,
and FSF metrics. Our lower performance of the SRA metric might
be the inappropriate style encoder.

2.7. Experiments on CMU [2] and Xia [12] Datasets

To further test the generalizability of our MCM-LDM,
we conduct experiments on motion data in BVH format.
Specifically, we train our MCM-LDM on the CMU [2]
dataset and test it on the Xia [12] dataset. Since BVH for-
mat data does not have an existing MotionCLIP as our Style
Extractor, we use a pretrained VAE encoder. We also com-
pared our MCM-LDM with Motion Puzzle [6], which uses
the same dataset. We adhere to the quantitative and visual
evaluation methodologies outlined in FineStyle [10].

As shown in Table 7, our MCM-LDM outperforms mo-
tion puzzle in terms of FMD and CRA, which proves the
high quality of our generated motion and the high degree
of content preservation. Moreover, our FSF metric is also
higher than the Motion Puzzle, further validating the su-
periority of our MCM-LDM of treating trajectories as an
additional learnable condition. This approach ensures more
natural motion and avoids significant foot-sliding artifacts.
Regarding the low performance on style metrics, we spec-
ulate that this is due to the VAE encoder’s inability to en-
code style features effectively. It might be necessary to train
a MotionCLIP equivalent with BVH format data, but this
presents challenges with the current BVH datasets due to
the lack of a large amount of annotated data.

In Fig. 3, we present the visual results, from which it can
be observed that both our method and Motion Puzzle [6]
successfully transfer the ”Old” styles. However, our ap-
proach achieves a more complete leg-kicking motion, while
Motion Puzzle fails to demonstrate a fully extended kick.
Furthermore, our generated kicking motion firmly plants
the standing leg on the ground, exhibiting a natural stance,
whereas Motion Puzzle results in both legs kicking simul-
taneously, leading to an unnatural motion portrayal. The
visual results further highlight our method’s advantages in
content preservation on the BVH dataset and in avoiding
significant foot-sliding artifacts, ensuring a logical, scien-
tifically sound, and fluid translation.

3. Details of Quantitative Metrics
In this section, we provide a detailed process for testing
our five metrics, including Fréchet Motion Distance (FMD),
Content Recognition Accuracy (CRA), Style Recognition
Accuracy (SRA), Trajectory Similarity Index (TSI), and

Foot Sliding Factor (FSF).
For FMD and CRA metrics, we need to train a content

classifier first. Specifically, we obtain a labeled sub-dataset
of CMU [2], CMU-8, based on the annotation information
provided by Action2Motion [3]. This dataset encompasses
eight categories of motions (including Walk, Wash, Run,
Jump, Animal Behavior, Dance, Step, and Climb), totaling
1,186 motions. During testing, we select 40 motions from
the HumanML3D [4] test set that are contained in CMU-
8, and select five motions per category. We consider these
motions as both content and style motion groups and the
two groups of motions undergo mutual motion style trans-
fer. The transfer process aims to simulate the task of ar-
bitrary motion style transfer. The results in a total of 1600
stylized motions for each method. We compute the CRA for
these stylized motions. Then, we regard them as fake mo-
tion, while CMU-8 serves as the real motion to determine
the FMD value. We further test our TSI and FSF metrics
using these stylized motions.

For the SRA metric, we first select six distinct long mo-
tions with diverse styles from the CMU [2] dataset, result-
ing in 130 motions after segmentation and mirroring. Using
these motions, we train a style classifier. During testing, we
choose 30 motions for both content and style motion groups
for each method, resulting in 900 stylized motions through
mutual style transfer. We then calculate the SRA metric for
these stylized motions.

For the TSI metric, we calculate the distance between
the stylized motion trajectory Tgen and the original content
motion trajectory Tcon using the Euclidean distance. The
formula for the calculation is

TSI =
1

L

L∑
i=1

√
(T i

con − T i
gen)

2, (1)

where L represents the length of the generated motions;
T i
gen and T i

con represent the trajectory feature for the i-th
generated motion and the corresponding content motion re-
spectively.

For the FSF metric, we first calculate the foot sliding
displacement digen generated by the left and right feet dur-
ing ground contact for each generated motion. We then add
the foot sliding displacements of all movements to get the
overall foot contact displacement dgen. As the original con-
tent motions themselves exhibit some displacement while
walking on the ground, we further calculate the overall foot
sliding displacements dcon for the content motions. The
final foot sliding factor for the generated motions can be
obtained using

FSF = (dgen − dcon)/dcon. (2)

This metric can effectively evaluate the degree of foot
slip in generating motions.
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Figure 3. Visual results on Xia [12] dataset. Our MCM-LDM can better preserve the content with a fully extended leg.

4. User Study Details

In this section, we provide more details of our user study.
We use the Wenjuanxing [1] website to design and collect
our questionnaires. Our user study comprises 8 unique style
transfer combinations. Each method is utilized to individu-
ally produce a stylized motion for each combination. This
results in 8 unique stylized motions per method, all of which
are then converted into a video format. Participants are
asked to rate each result on a scale of 1 (significantly in-
accurate) to 5 (significantly accurate), based on three met-
rics. Fig. 2 shows our designed user interface, where users
should rate each stylized motion in the specific style transfer
group.

As for user background, the study involves 40 partici-
pants of various backgrounds, including 25 students, 2 sales
staff, 4 production workers, 3 teachers, and 6 individuals of
other professions. Among them, there are 28 male users and
12 female users, including 2 under 18 years old, 28 between
18 and 25 years old, 6 between 26 and 30 years old, and 4
over 30 years old.

5. Architecture and Training Details of Our
Multi-condition Extractor

In this section, we provide the architecture and training de-
tails of our Multi-condition Extractor.

5.1. Architecture

Our Multi-condition Extractor comprises three encoders:
Style Extractor, Content Encoder, and Trajectory Encoder.
The role of the Style Extractor is to extract the style features
fs of the motion x1:L. To achieve this, we retrain the Mo-
tionCLIP [11] and utilize its encoder as our Style Extractor.
Due to the alignment between the latent space of Motion-
CLIP and text/image, our Style Encoder can better capture
the style features of the style motion.

As shown in Fig. 4-A, our Content Encoder processes
the content motion x1:L. After initial processing by the pre-
trained motion VAE encoder E , we employ a StyleRemover
module to eliminate the style information within the con-
tent. In StyleRemover, we use instance normalization (IN)
and linear dimensionality reduction, preventing the model
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Figure 4. Architecture of our Content Encoder and Trajectory
Encoder. We apply the StyleRemover module in our Content En-
coder to strip style details from content motion x1:L and use a
transformer network in the Trajectory Encoder to encode the mo-
tion trajectory t1:L.

from overly depending on the content and thus avoiding
style transfer failure.

For the Trajectory Encoder, as shown in Fig. 4-B,
we draw inspiration from ACTOR [8] and employ a
transformer-based encoder for trajectory encoding. Since
the input motion lengths vary, we use a learnable parame-
ter as the global trajectory token ttoken and concatenate it
with the projected trajectory sequence. The final trajectory
condition feature is obtained by taking the corresponding
dimension of the global trajectory token in the transformer
output. This process can be summarized as:

ft = TE
(
PE

([
ttoken, FC

(
t1:L

)]))
[0] , (3)

where TE(·) represent the Transformer Encoder; PE(·) is
the Position Encoding; the FC(·) is the Linear layer.

5.2. Training Details

Except for the VAE encoder used in our Content Encoder
and the MotionCLIP used for Style Extractor, which are



pretrained, the other parts of our Multi-condition Extractor
are involved in the final training of our denoising network.
Within this, the transformer in the StyleRemover utilizes
a 1-layer, 4-head configuration, while the transformer in
the Trajectory Encoder uses a 2-layer, 4-head configuration.
We have encoded all conditions into a 256-dimensional fea-
ture space.
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