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In this supplementary material, we provide more details
of Semantic-OPV2V in Sec. 1. To showcase the robustness
of the proposed CoHFF approach, we give extended results
for its performance in relation to the communication budget
and additionally assess its robustness in the presence of GPS
noise in Sec. 2. We also present a range of visual results il-
lustrating the effectiveness of CoHFF in diverse scenarios in
Sec. 3. Note that we consistently use the same color scheme
for each semantic class, as illustrated in the first column in
Tab. 1.

1. Semantic-OPV2V dataset

We first equip each Connected and Automated Vehicle
(CAV) in the CARLA simulation [1] with a semantic Li-
DAR at the position of each camera. This setup aims to cap-
ture the road environment within the Field of View (FoV)
of the cameras as comprehensively as possible. Fig. 1 il-
lustrates the semantically labeled point clouds generated by
these semantic LiDARs.

Additionally, we outfit the surroundings of each CAV
with a system comprising 18 semantic LiDARs to collect
data on the road environment, including semantic occu-
pancy space with occluded objects, as shown in Fig. 2.
Specifically, we choose 9 positions surrounding each CAV,
with each adjacent position spaced 30 meters apart. At each
of these positions, we install two semantic LiDARs: one set
at an vertical FoV ranging from -20 to -90 degrees, and the
other ranging from -20 to 0 degrees.

By replaying the OPV2V dataset in CARLA-based
OpenCDA [5], we collect semantically-labeled point clouds
with 4 and 18 semantic LiDARs for each frame in the
dataset. These point clouds are saved in PCD-format for
further processing into semantic voxel data, useful for su-
pervision or evaluation purposes.
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Table 1. CoHFF achieves robust IoU and mIoU performance, when
the communication volume (CV) is reduced by setting various spar-
sification rates (Spar. Rate). The mask used for sparsification is
learned under collaborative supervision.

Spar. Rate 0.00 0.50 0.80 0.95 0.99

CV (MB) (↓) 16.53 8.27 3.31 0.83 0.17

IoU (↑) 50.46 49.56 49.53 48.52 48.02
mIoU (↑) 34.16 32.97 32.70 30.13 29.48

Building 25.72 17.77 16.79 13.08 12.12
Fence 27.83 29.61 29.12 25.25 22.76

Terrain 48.30 47.98 47.60 44.42 44.77
Pole 42.74 37.73 37.69 35.65 35.83

Road 61.77 59.47 60.15 59.42 59.86
Side walk 39.62 42.03 41.36 40.81 39.11

Vegetation 20.59 21.36 20.18 13.35 14.74
Vehicles 63.28 60.25 60.33 60.14 59.98

Wall 58.27 52.68 53.41 51.94 51.20
Guard rail 1.94 3.86 3.51 1.66 1.55

Traffic signs 16.33 19.50 19.09 13.13 10.74
Bridge 3.53 3.39 3.11 2.67 1.11

Moreover, to train the Depth Net, we gather correspond-
ing depth labels for the RGB cameras in the training dataset,
as shown in Fig. 3. For a visual evaluation, we transform
and visualize the results of depth estimation in the 3D voxel
space. Fig. 4 compares these results with voxels based on
raw LiDAR and collaborative semantic voxel labels.

2. Robustness

2.1. Low communication budget

We present additional results of the CoHFF performance
in reducing the communication budget in Tab. 1. This in-
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Figure 1. Visualization of semantic point clouds from 4 semantic
LiDARs in Ego vehicle and CAVs.

cludes an assessment of the robust performance for overall
Intersection over Union (IoU) as well as individual IoU for
each class.

2.2. GPS noise

In our paper, we assess the performance of CoHFF using
accurate GPS information. This section extends the experi-
ment to include scenarios with varying GPS noise levels in
Fig. 5, specifically Gaussian noise with a standard devia-
tion ranging from 0 m to 0.6 m, which aligns with method-
ologies used in previous work, such as [2–4] for evaluating

Figure 2. Visualization of semantic point clouds from 18 semantic
LiDARs.

collaborative perception.

3. Further visual results
We provide a further visual comparison of CoHFF predic-
tion results with collaborative and ego ground truth (GT) in
an urban lane-change scenario in Fig. 6, an urban junction
scenario in Fig. 7 and a highway scenario in Fig. 8. Our re-
sults demonstrate that the collaborative semantic occupancy
prediction using CoHFF can achieve more complete percep-
tion than the ground truth in ego GT.



Figure 3. Corresponding depth labels gathered for the RGB cameras in the training dataset.

Figure 4. Visual comparison of occupied voxels derived from
depth estimation, raw LiDAR, and collaborative semantic voxel la-
bels. The gray color represents occupied voxels with an unknown
semantic label.

Figure 5. Our CoHFF model demonstrates robust performance in
terms of overall IoU and mIoU stability. However, the IoU for each
class exhibits individual variations, reflecting the unique impact of
GPS noise on different categories.



Figure 6. Visual comparison of CoHFF prediction results with collaborative and ego GT in an urban lane-change scenario.



Figure 7. Visual comparison of CoHFF prediction results with collaborative and ego GT in an urban junction scenario.



Figure 8. Visual comparison of CoHFF prediction results with collaborative and ego GT on a highway scenario.
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