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Figure 9. Illustration of the background-blending process.

1. Overview

The following sections will be discussed to further support
our paper:
• The background-blending process;
• Mask types (used for shape-guided generation);
• Ablation study on two alternative architectures;
• Additional results of shape-guided generation;
• Additional qualitative comparison results.
• Additional comparisons with AnyDoor [6];
• Failure cases;

2. Background Blending

This process is illustrated in Fig. 9. At each denoising step,
the background area of the denoised latent is masked and
blended with unmasked area from the clean background (in-
tuitively, the model is only denoising the foreground).

3. Mask Types

As discussed in Sec. 3.2, to enable more user control, we
define four levels of coarse masks, including the bounding
box mask. Fig. 10 shows all the mask types. As the coarse
level increases (from mask 1 to mask 4), the model has more
freedom to generate the object.

4. Ablation Study on Alternative Architectures

When making efforts for better identity preservation, we
also explore two alternative architectures (Fig. 11) that are
more intuitive to inject object features (due to the page lim-
itation, they are removed from the main paper): 1) concate-
nation and 2) ControlNet [63]. To provide extra features in
this two pipelines, a naive idea is to use the same segmented
object Iobj as the additional input. However, both the struc-
tures of concatenation and ControlNet will result in a spatial
correspondence between the output and the additional input
(i.e., the generated object tends to have the same size and

position as the input), and using Iobj which is much larger
than the mask M destroys such correspondence. For this
reason, we use I⇤

obj
, the inserted object image as the addi-

tional hint to provide extra features, where the cropped and
resized object Iobj is fitted in the mask area of the back-
ground image Ibg . To replace the text encoder branch, we
use a combination of a CLIP encoder (ViT-L/14) and an
adapter as the image encoder, fine-tuned together with the
UNet backbone following the sequential collaborative train-
ing strategy discussed in Sec. 3.4. Furthermore, the two
pipelines are trained on the same datasets (Pixabay and the
video datasets) as our proposed model in the second stage.

4.1. Concatenation

The first architecture is illustrated in Fig. 11a. An addi-
tional feature injection branch is added for the purpose of
better identity preservation: I⇤

obj
is concatenated with the

background image Ibg . After this modification, the UNet
encoder has 8 channels, where the extra 4 channels are ini-
tialized as 0.0 at the start of the training.

4.2. ControlNet

The second architecture is illustrated in Fig. 11b. Control-
Net is another structure to enhance spatial conditioning con-
trol, such as depth maps, Canny edges, sketches and human
poses. In this pipeline, the extra inputs are fed into a train-
able copy of the original UNet encoder to learn the con-
dition. In our task of generative object compositing, we
use the concatenation of the inserted object I⇤

obj
and a mask

1�M indicating the area to generate the object.

4.3. Quantitative Comparison

To quantize the effects of these two architectures, an eval-
uation is conducted on the DreamBooth dataset, just as in
Sec. 4.3. Tab. 5 shows the results, where ”Baseline” is set-
ting 3 in the ablation study of the main paper (Sec. 4.7).
Our model outperforms the rest pipelines in all three met-
rics that measure identity preservation, demonstrating the
effectiveness of IMPRINT in memorizing object details.

To further assess the compositing effects, we perform an-
other user study with the same configuration as in the main
paper (Sec. 4.5), comparing the realism and fidelity of our
results against the concatenation pipeline and ControlNet
pipeline. Tab. 6 displays the user preferences for different
frameworks in the two questions. The results validates the
superiority of our model in both ID-preserving and com-
positing.



Figure 10. The four types of mask used in the second compositing stage. The generation is constrained in the masked area so the user-
provided mask is able to modify the pose, view and shape of the subject.

(a) The concatenation-based pipeline. Aside from the embedding branch, an
additional input (the inserted object I⇤obj ) is concatenated with Ibg . Note that
the UNet backbone encoder has 8 input channels, where the extra 4 channels
are initialized as 0.0.

(b) The ControlNet-based pipeline. In the new ControlNet branch, the con-
catenation of I⇤obj and a mask is given as the additional input.

Figure 11. The pipelines of the two alternative architectures for
feature injection: Concatenation and ControlNet.

4.4. Qualitative Comparison

Fig. 12 provides a qualitative comparison between our
model and the other two pipelines. Although the nature of

Method CLIP-score" DINO-score" DreamSim #
Baseline 76.6250 39.7837 0.3073

Concat 76.8125 40.3884 0.2945

ControlNet 76.8750 40.1471 0.2984

Ours 77.0625 43.4463 0.2898

Table 5. Quantitative comparison on the DreamBooth test set.
Baseline refers to setting 3 in the ablation study section of the main
paper. Detail preservation is measured and displayed in this table,
comparing our proposed model with three different architectures.

Ours Concat Ours ControlNet
Realism 50.68 49.32 53.38 46.62
Fidelity 55.41 44.59 54.73 45.27

Table 6. User study results (in percentage). In the two questions
that evaluates reality and similarity, the workers are presented with
side-by-side results from different models and are asked to make
comparison.

structural correspondence in these two pipelines enhances
ID preservation, it also constrains their ability to make spa-
tial adjustments. Thus, in the figure their compositing ef-
fects are worse than our model (in the first three examples,
our outputs have larger pose changes). Moreover, owing
to the pretraining stage, our model achieves better perfor-
mance in keeping details.

5. Additional Results of Shape-Guided Gener-

ation

5.1. Ablation Study

Shape-guidance is an important feature supported by our
model that enables more user control. This feature is not in-
dependent of our efforts in identity preservation. Instead,
the overall performance (realism and fidelity) of shape-
guided generation is improved by our pretraining stage, as
demonstrated by Tab. 7.

This ablation study is conducted on the video datasets



Figure 12. Qualitative comparisons with concatenation-based pipeline and ControlNet-based pipeline. Our model shows stronger ability
in geometric adjustments (especially in the first three examples) as well as better performance in identity preservation.

(the test sets). We follow the same data generation pipeline
in Sec. 3.3: the target image and the input object are taken
from frames In1, In2 respectively, with n1 6= n2. The guid-
ance mask M is a coarse mask of the object segmentation in
the target frame n1. We compare our proposed model with
another model that is only trained on the second composit-
ing stage. The quantitative results show the improvement of
the pretraining stage.

6. Additional Qualitative Results

To further show the advantages of our model against the
baseline methods (Paint-by-Example or PbE [58], Object-
Stitch or OS [53] and TF-ICON [35]), we include more
qualitative results in Fig. 13 and Fig. 14.

Method FID # CLIP-score" DINO-score" DreamSim #
No PRE 70.0528 91.5625 83.8687 0.1723

PRE 59.6255 91.9375 84.7372 0.1589

Table 7. Ablation study on the pretraining stage in shape-guided
generation. PRE means the pretraining. When the pretraining is
finished, the model shows stronger capabilities in ID-preserving
and realism, highlighting the fact that our pretraining boosts the
performance of shape-guided generation.

7. Additional Comparisons with AnyDoor

We provide additional comparisons below using the official
implementation of AnyDoor. We observe that IMPRINT



Figure 13. More qualitative comparisons. We compare our proposed model with Paint-by-Example (PbE), ObjectStitch (OS) and TF-
ICON. IMPRINT better preserves object identity and the generated object is more consistent with the background.



Figure 14. More qualitative comparisons. We compare our proposed model with Paint-by-Example (PbE), ObjectStitch (OS) and TF-
ICON. IMPRINT better preserves object identity and the generated object is more consistent with the background.



Figure 15. Additional qualitative comparisons with AnyDoor.

Method CLIP" DINO"
AnyDoor 83.563 83.598

Ours 85.813 86.589

Method Realism Fidelity

AnyDoor 40.71 35.18
Ours 59.29 64.82

Table 8. Left: Quantitative comparison on the DreamBooth test
set. Right: User study results (in percentage).

significantly outperforms AnyDoor in the following experi-
ments:

• We calculate CLIP score and DINO score on the Dream-
Booth test set to measure the identity preservation (as
shown in the left of Tab. 8). Note that to get more accurate
results, we masked the background of all generated im-
ages when performing the evaluation on the DreamBooth
set.

• We conduct a new user study under the same setting as
the user study in the main paper (shown in the right of
Tab. 8). The users have higher preference rate in our re-
sults in both realism and detail preservation.

• In the additional visual comparisons in Fig. 15, our model
demonstrates greater adaptability in adjusting the object’s
pose to match the background, while preserving the de-
tails.

8. Failure Cases

Fig. 16 shows the limitations of IMPRINT, as discussed in
Sec. 5. In the first example, Though the vehicle is well
aligned with the background, its structure is deformed and
partially lose its identity due to the large spatial transforma-
tion. In the second example, the small logos and texts on the
item cannot be fully maintained and exhibits small artifacts,
mainly caused by the decoder in Stable Diffusion [43].



Figure 16. Limitations. 1) The first example shows identity loss when making large geometric corrections. The structure of the vehicle
changes after generation. 2) The second example shows the degradation of small logos and texts after decoding from the latent space.


