
A. Dataset Creation
As discussed in Sec. 2, existing datasets designed for the
binary discrimination of real vs. synthetic samples are not
suitable for the task of model attribution (i.e. discriminating
among multiple different generative models) in two aspects:
(i) the diversity of generative models (GMs) is limited, and
(ii) the variability of the models’ training datasets makes the
study of model fingerprint – independent of their training
datasets – difficult. Rather, a proper benchmark dataset for
model attribution should satisfy the following desiderata:
1. It should include GMs from various families, covering

VAEs, GANs, Flows and Score-based (i.e. Diffusion)
models

2. It should contain state-of-the-art models, in addition to the
more standard models that existing works have focused
on (e.g. ProGAN, CycleGAN, StyleGAN)

3. The generative models in the dataset should be trained
on the same training set in order for the analysis on the
fingerprint features to be directly attributed to the char-
acteristics of the generative models, without confound-
ing effects from the variability in the models’ training
datasets.

To this end, we designed three new datasets (GM-CIFAR10,
GM-CelebA, GM-CHQ and GM-FFHQ; See Tbl. 1) that
carefully satisfy these three desiderata. GM-CIFAR10 con-
tains images from generative models trained on CIFAR-
10 [32]. GM-CelebA contains images from generative mod-
els trained on CelebA [34], GM-CHQ from models trained
on CelebA-HQ (256) [24], and GM-FFHQ from models
trained on FFHQ (256) [24]. To complement the existing
datasets, our datasets include GMs that achieve state-of-
the-art results on unconditional image synthesis, such as
DDGAN [63] and StyleSwin [66] for GAN, NVAE [58] and
Efficient-VDVAE [19] for VAE, and LDM [50] and LSGM
[59] for diffusion models.

A.1. Details on dataset creation
GM-CelebA dataset We construct a dataset of real and
GM-generated images by collecting real images from the
original CelebA (image-aligned and resized to 64x64) [34]
and generating 100k samples from GMs trained on CelebA-
64. We consider 4 VAE models, 5 GAN models, 1 Flow and
1 Score-based model, based on the best availability of the
released code and model checkpoints. We trained the models
on our own when no official pretrained model was released.
See Tab. 1 for the list of GMs used for this dataset.
GM-CHQ dataset To study the fingerprints of more ad-
vanced generative models, we collect samples from state-of-
the-art models such as NVAE [58], Efficient VDVAE [19],
VQ-GAN [10], StyleGAN2 [27], Denoising Diffusion GAN
(DDGAN) [63], DDPM++ [22], NCSN++ [55] and Latent
Score-based Generative Model (LSGM) [59]. All the models

are trained on CelebA-HQ 256 [24]. From each model, we
collect 100k samples. See Tab. 1 for the full list of GMs
and the supplementary materials for details on the sampling
procedure from each generative model. d

Fig. 7, Fig. 8 and Fig. 9 show samples from our GM-CHQ
dataset. The images are randomly sampled from each GMs
following the process detailed in each work or codebase.

B. Details on baseline fingerprinting methods
Tab. 6 summarizes baseline fingerprinting methods that we
compared against our definitions proposed in Sec. 4.

C. Feature space analysis
C.1. Fréchet Distance Ratio (FDR)
We measure the separability of a fingerprint feature space
using the ratio of Fréchet Distance. This measure was also
used in Yu et al. [64] to evaluate the learned feature space
for GAN fingerprints. In our work, we use it to evaluate
fingerprints in a more generalized sense in that they are to
identify more diverse set of GMs (not just GANs) including
many state-of-the-art models.

FDR is computed as the ratio of inter-class and intra-class
Fréchet Distance [7]:

FDR =
inter-class FD
intra-class FD

(19)

Intra-class FD aims to capture the average tightness of a
feature distribution per class, and can be measured as the FD
between two disjoint sets of images in the same class. As in
Yu et al. [64], we split, for each class, the fingerprint features
into two disjoint sets of equal size, compute their Fréchet
Distance, and then average it over each class.
Inter-class FD aims to capture the average distance between
feature distributions of different classes. To compute this
distance, we measure the FD between two feature sets from
different classes and take the average over every possible
pair of (different) classes.

D. Experiment: characterization of generative
models

We further study the clustering structure of the set of GM
artifacts and explore if it is possible to relate the clustering
patterns to the hyperparameters that govern the model design
of generative models, such as the type of sampling layers and
the type of loss functions. To do so, we take insights from
the experiments in [1, 8, 9], and group the model hyperpa-
rameters into the following categories: Type of upsampling,
Type of non-linearity in the last layer, Type of normalization,
Use of downsampling, Use of skip connection, and Type of
loss function. For example, we categorize the loss functions



Paper Input domain Representation Classifiers Metric(best) Datasets

McCloskey18 [40] RGB Histogram of saturated,
under-exposed pixels SVM AUC (0.7) NIST MFC2018

Nataraj19 [43] RGB Co-occurrence matrix
of pixels CNN EER (12.3%) 100k-Faces (StyleGAN)

Durall20 [8] Freq. 1D power spectrum
(azimuthal integral) SVM Binary Acc

(96%)

Own
(DCGAN, DRAGAN,
SGAN, WGAN-gp)

Dzanic20 [9] Freq. Fourier spectrum
(norm. by DC gain) KNN Binary Acc

(99.2%)

Own
(StyleGAN,StyleGAN2,

PGGAN,VQ-VAE2,ALAE)

Wang20 [61] Freq. 2D average spectra CNN LOMO, Binary Acc
(84.7%) Own (10 GANs)

Marra18 [37] Learned Supervised Pretrained CNN + Finetuned
(Inception-v3/XceptionNet)

LOMO1, Binary Acc
(94.49%)

Own
(Real, CycleGAN per category)

Marra19 [39] Learned Supervised CNN + IL Binary Acc
(99.3%)

Own
(4 GANs, 1 Flow)

Yu19 [64] Learned Supervised CNN Multi Acc
(98.58%)

Own
(ProGAN, SNGAN

CramerGAN, MMDGAN)

Table 6. Features and datasets used in the baseline methods

Model Params. (NMI ") Optim. Params
Methods Upsampling Non-linearity Normalization Downsampling Use skip Loss Type
ManiFPTRGB 0.625 0.453 0.647 0.432 0.541 0.563
ManiFPTFREQ 0.654 0.354 0.534 0.692 0.317 0.631
ManiFPTSL 0.613 0.452 0.481 0.546 0.434 0.677
ManiFPTSSL 0.680 0.477 0.465 0.615 0.357 0.573
Average 0.643 0.434 0.465 0.532 0.571 0.611

Table 7. Clustering structure in GM-CHQ. We measure the alignment of clustering in Normalized Mutual Information (NMI) on our
feature spaces (using RGB, Frequency, Supervised-learning (SL), Self-supervised learning (SSL) representations to clusterings based on
model design parameters (e.g. type of upsampling, type of non-linearity in the last layer, type of normalization later, type of loss function).
NMI is bounded to [0,1]. Higher index indicates closer agreement between two cluster assignments.

in our datasets into three types (likelihood-based (VAEs), im-
plicit density matching (GANs), and score-matching (Score-
based models)), and the type of non-linearity in the last layer
into ReLU, Tanh, and Sigmoid. See the supplementary for
more details on our categorization of the hyperparameters
and specific values each GM in our datasets take.
Metric. We use Normalized Mutual Information (NMI) [41]
to measure the clustering alignment between the clustering
in a fingerprint representation (Cf ) and the clustering on the
assignment of a model design choice (e.g. type of upsam-
pling operation) as the ground-truth cluster labels (Ch). For
instance, to measure how well the clustering in a fingerprint
space coincides with the clusters according to the type of
loss function, we set as Ch the result of clustering datapoints
based on the type of their source GM’s loss function. If the
loss type is a proper criterion to categorize different genera-
tive models, the two clusterings (Cf based on the fingerprint
representations and Ch on the labels of loss type) will have a
strong agreement, and their clustering index will be high.

Results. Table 5 reports NMI between a feature space and
each category of model hyperparameters, reflecting which
criterion in grouping the generative models (e.g. the type of
upsampling vs. the type of non-linearity vs. the type of loss
function) agrees well with the grouping in the fingerprint
representation space. Note that NMI is bounded to [0, 1],
and a higher index indicates a closer agreement between two
cluster assignments. The last row (Avgours) shows the NMI
averaged over our methods in RGB, frequency, supervised-
learning based and unsupervised-learning based represen-
tation space. First of all, we observe that the clustering on
our fingerprint space aligns the best with the clustering by
the GMs’ upsampling types and loss types. In other words,
our result suggests that the two hyperparameters (Type of
upsampling and Type of loss function) show the most similar
clustering patterns with our fingerprint representations.

The high NMI for the type of upsampling supports previ-
ous experiments that identified the upsampling operation of
generator networks as a cause of the high-frequency discrep-



ancies in the GM-generated images [4, 8, 9]. Additionally,
the high NMI for the type of loss function confirms the gen-
eral consensus in the research community that the training
objective of a generative model is one of the key factors that
affect their characteristics.

Therefore, our findings confirms the general intuition in
the research community about distinct sources of limitations
in generative models and shows the utility of our definitions.

E. Visualization: artifacts of generative models
We visualize more examples of artifacts of generative models
in GM-CelebA and GM-CHQ, computed under our proposed
definition in Sec. 3.1. Fig. 5 shows the triplets of (generated
images (xG), its closest point to the data manifold in RGB
(x?) and the artifact (a)). Fig. 6 visualize the artifacts in
frequency domain from the GM-CHQ dataset.

E.1. Artifacts in RGB space (GM-CelebA)

Figure 5. Visualization of artifacts in the RGB space (GM-
CelebA). Each column corresponds to the generated images (xG),
their closest points on the data manifold (x?), and the artifacts
(a). Each artifact is computed as the different between x? and xG

following the definition and algorithm in Sec. 3.1.



Figure 6. Visualization of artifacts in the frequency space (GM-CHQ). We show some examples of triplets (model-generated image
(imgg), closest point on the data manifold (imgp), artifact) from GM-CHQ dataset by computing artifacts (as defined in Sec. 3.1) in frequency
domain. imgp is the point on the real data manifold that is closest to imgg in the frequency domain. Artifact is computed as the different
between the two points, imgg and imgp, after applying channelwise-FFT.



(a) DDGAN [63] (b) StyleGAN2 [27]

(c) StyleSwin [66] (d) VQ-GAN [10]

Figure 7. Samples from GAN models in GM-CHQ.



(a) StyleALAE [47] (b) Efficient VDVAE [19]

(c) NVAE [58] (d) VAEBM [62]

Figure 8. Samples from VAE models in GM-CHQ.



(a) DDPM [22] (b) LDM [50]

(c) LSGM [59] (d) NCSN++ [55]

Figure 9. Samples from score-based (a.k.a. diffusion) models in GM-CHQ.
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