
A. Environment settings
A.1. Meta-world

We compare our approach with other baselines in Meta-
world [10] for addressing complex robot manipulation
tasks. An agent observes only visual images from the en-
vironment, without using sensor data. The agent decides
the velocities in the x, y, and z axes of the grippers and
the gripping force for action to perform the specified ma-
nipulation task. We utilize the reward function defined
in Meta-world [10]. We considered the difficulty of tasks
and selected 10 tasks (button-press, door-lock, door-unlock,
drawer-close, faucet-open, faucet-close, reach, reach-wall,
window-close, handle-press) from the MT50 benchmark for
our experiments. Figure A.1 illustrates states in the Meta-
world environment.

(a) Handle-press (b) Window-close (c) Door-lock

Figure A.1. Visualization examples of tasks in Meta-world

A.2. CARLA

To verify the performance of models at mission-critical au-
tonomous driving tasks with inference time constraint, we
conduct experiments in the CARLA simulator [3]. CARLA
is an open-source simulator for autonomous driving tasks,
providing various environment settings for driving maps.
The agent observes visual image, and sensor data such as
acceleration, angular velocity, location, rotation, direction,
velocity, target location, and previous action. The agent is
capable of performing actions such as accelerating, brak-
ing, and steering.

For the agent’s position pos(t) at timesteps t and col(t)
is the collision penalty, the reward is calculated by

R(s, a, T) = ||pos(t)− T ||2 − col(t) (A.1)

where T is specified by the target location. We use 12 dif-
ferent maps as a multi-task. Figure A.2 shows examples of
driving maps. Considering the complexity of autonomous
driving, we supplement the learning algorithm with online
behavior cloning algorithms in CARLA.

A.3. AI2THOR

To evaluate the applicability of our model in complex nav-
igation tasks in an embodied environment and a time con-
straint, we perform experiments in AI2THOR [4]. We use

Figure A.2. Visualization examples of maps in CARLA, Yellow
dots denote start locations and Red dots denote target locations.

rearrange tasks [8] in AI2THOR simulator, which places
objects to match a given goal image. The agent receives
both the current visual image and the position of target ob-
jects, which is indicated in the goal image, as task infor-
mation. And, the agent performs high-level semantic ac-
tions in this environment demonstrated in Table A.1. We
train our model with the reward functions defined in [8].
For the pre-trained model, we utilize the expert dataset pro-
vided from [8] with DAgger algorithms [7]. We define the
tasks for multi-task evaluation based on the positions of the
target objects and conduct evaluations on 50 seen and 50
unseen scenarios. Example images of AI2THOR are illus-
trated in Figure A.3.

Table A.1. AI2THOR Actions

Navigation

Move [Ahead/Left/Right/Back]
Rotate [Right/Left]
Look [Up/Down]

Done

Object interaction
PickUp [Object Type]
Open [Object Type]

PlaceObject

Figure A.3. Visualization examples in AI2THOR

Task encoder

state task

Routing
network

Path
weights

Modular network

State encoder

Figure A.4. Base network architecture of MoDeC

B. Implementations

In this section, we provide the implementation details of
our model and comparison methods. Our mode is im-
plemented using Python v3.8, Jax v0.3.24, and Pytorch
v1.13. It is trained on a system of an Intel(R) Core(TM)
i9-10940X CPU @ 3.30GHz and NVIDIA GeForce RTX
4090. And device adaptor is trained and evaluation is per-
formed on three embedded devices, Nvidia Jetson Nano
(Nano), Nvidia Jetson Xavier NX 8GB (Xavier), and Nvidia
Jetson AGX Orin 32GB (Orin).

B.1. MoDeC (Ours)

The base network consists of the modular network and soft
routing network. In the base network, to be the same as [9],
the modular network takes the output of the state encoder,
and the routing network gets the output of the state and
task encoders as input. Overall architecture is shown as
Figure A.4 In our implementation, the actor network only
uses the modular network architecture. It is because that the
critic is only used for training, and then the critic does not
need a dynamic inference. The hyperparameter settings for
the network architecture of the base network πbase are de-
tailed in Table A.2.

Iterative module selection network and module selection
use the same network architecture. Also, the actor and critic
share a feature extractor, and each of them has two fully
connected (fc) layers at the end. Joint learning is imple-
mented as the base network and the iterative module se-
lection network is trained alternately for a certain number
of steps. The network architecture of the iterative module
selection network and module selection network is in Ta-
ble A.3, and the hyperparameter settings for training are de-
tailed in Table A.4.

Table A.2. The network architecture of the base network πbase for
MoDeC.

Configurations Values
Num. of layer 4

Num. of module per layer 4
Activation function Swish

Actor

State encoder [6×6, 2, 32] (for CARLA)
[6×6, 2, 64] (for otherwise)

Task encoder 64-d fc (for CARLA)
128-d fc (for otherwise)

Routing network

maxpool 2×2
[6×6, 2, 16]

[6×6, 2, 64] (for CARLA)
[6×6, 2, 128] (for otherwise)

64-d fc×2 (for CARLA)
128-d fc×2 (for otherwise)

52-d fc

Modular network

layer 1
maxpool 2×2

[3×3, 1, 32] (for CARLA)
[3×3, 1, 128] (for otherwise)

layer 2
maxpool 2×2

[3×3, 1, 32] (for CARLA)
[3×3, 1, 128] (for otherwise)

layer 3
maxpool 2×2

[3×3, 1, 64] (for CARLA)
[3×3, 1, 256] (for otherwise)

layer 4
maxpool 2×2

[3×3, 1, 64] (for CARLA)
[3×3, 1, 256] (for otherwise)

fc layers 64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Critic network

maxpool 4×4
[6×6, 2, 32] (for CARLA)
[6×6, 2, 64] (for otherwise)

maxpool 2×2
[6×6, 2, 64] (for CARLA)

[6×6, 2, 128] (for otherwise)
avgpool 5×5

64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Table A.3. Network architectures of iterative module selection net-
work πims and module selection network πms for MoDeC

Configurations Values
Activation function Swish

Feature extractor

maxpool 4×4
[6×6, 2, 32] (for CARLA)
[6×6, 2, 64] (for otherwise)

maxpool 2×2
[6×6, 2, 64] (for CARLA)

[6×6, 2, 128] (for otherwise)
avgpool 5×5

Actor network 64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Critic network 64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

B.2. DRNet

DRNet [1] is a model consisting of cells formed by acyclic
graphs between nodes connected in a series. In this model,
the overall architecture is a sequence of multiple cell struc-

Table A.4. Training hyperparameters of MoDeC

Configurations Values

Batch size 300 (for iter. module sel. net.)
60 (for otherwise)

Temperature τ
1.0 (for iter. module sel. net.)

0.005 (for otherwise)

Timesteps
3e+7 (for base network)

1e+7 (for iter. module sel. net.)
1e+6 (for module sel. net.)

Train frequency 300 (for iter. module sel. net.)
12 (for otherwise)

Gradient steps per update 1
Discount factor γ 0.99

Buffer size 1e+5 (for base network)
Learning rate 1e-4

Device adapter
Num. of data 1e+3

Batch size 16
Epochs 100

Learning rate 1e-3

tures, which consists of input nodes, intermediate nodes,
output nodes, branches, and RouterNet. Every input node
is connected by a set of branches to intermediate nodes, and
the output node is calculated by the summation of interme-
diate nodes. RouterNet dynamically determines the relative
importance weight of each branch among the branches of
each connection. In our implementation, we use the CNN
layer and skip-connection layer as the branches. The actor
and critic share DRNet parameters, and each of them has
two fully connected (fc) layers at the end. In training DR-
Net, we control the trade-off between inference time and
performance by the coefficient of CNN usage penalty based
on the environment reward. Network architecture for DR-
Net is detailed in the Table A.5, and the training hyperpa-
rameter settings are detailed in the Table A.6.

Table A.5. Network architecture of DRNet.

Configurations Values
Num. of cell 2

Num. of input node 1
Num. of intermediate node 4

Activation function Swish

Cell 1

Branch [3×3, 1, 32] (for CARLA)
[3×3, 1, 128] (for otherwise)

RouterNet
[3×3, 1, 32] (for CARLA)

[3×3, 1, 128] (for otherwise)
avgpool, 16-d fc

Cell 2

Branch [3×3, 1, 64] (for CARLA)
[3×3, 1, 256] (for otherwise)

RouterNet
[3×3, 1, 64] (for CARLA)

[3×3, 1, 256] (for otherwise)
avgpool, 16-d fc

Actor network 64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Critic network 64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Table A.6. Training hyperparameters of DRNet.

Configurations Values
Learning rate 1e-4

Temperature τ 0.005
Discount factor γ 0.99

Train frequency steps 12
Gradient steps per update 1

Batch size 60
Buffer size 1e+5
Timesteps 3e+7

B.3. D2NN

D2NN [6] is a dynamic network architecture composed of
regular and control nodes, where the control node dynam-
ically determines which regular nodes that actual opera-
tions are performed to use for inference. Similar to DRNet,
this model trains the best performance-efficiency trade-off
through reward shaping by CNN usage penalty. We use the
same network architecture of MoDeC for D2NN. That is,
the regular node corresponds to each module in the base
network, and the control node has the same network archi-
tecture as the module selection network. The hyperparame-
ter settings are detailed in the Table A.7.

Table A.7. Training hyperparameters of D2NN.

Configurations Values
Learning rate 1e-4

Batch size 60 (for regular node)
300 (for control node)

Temperature 0.005 (for regular node)
1.0 (for control node)

Train frequency 12 (for regular node)
300 (for control node)

Timesteps 3e+7 (for regular node)
1e+7 (for control node)

Discount factor γ 0.99
Gradient steps per update 1

Buffer size 1e+5 (for regular node)

B.4. DS-Net

DS-Net [5] is a dynamic slimable model which slices its
own CNN network channels by ratio, the output of a gater
network. We slightly modify this to suit our problem situ-
ation, replacing the ratio with an input instead of using the
gater network. In a similar context, as the dynamic archi-
tecture of DS-Net is unnecessary for the critic, this model
is included only in the actor. The network architecture and
hyperparameter settings are detailed in the Table A.8, A.9.

B.5. RL-AA

RL-AA [2] is a cost-aware RL model where the high-level
policy dynamically determines which policy to use from the
low-level policy, a set of policies with various sizes of net-
work architectures. For a wide range of real-time inference

Table A.8. Network architecture of DS-Net.

Configurations Values
Activation function Swish

Actor

State encoder [6×6, 2, 32] (for CARLA)
[6 × 6, 2, 256] (for otherwise)

DS-Net

Layer 1
[3×3, 1, 32]×2 (for CARLA)

[3×3, 1, 256]×2 (for otherwise)
batchnorm, maxpool 2×2

Layer 2
[3×3, 1, 64]×2 (for CARLA)

[3×3, 1, 512]×2 (for otherwise)
batchnorm, maxpool 2×2

fc layers

avgpool 5×5
64-d fc (for CARLA)

512-d fc (for otherwise)
32-d fc×2 (for CARLA)

256-d fc×2 (for otherwise)

Critic network

maxpool 4×4
[6×6, 2, 32] (for CARLA)
[6×6, 2, 64] (for otherwise)

maxpool 2×2
[6×6, 2, 64] (for CARLA)

[6×6, 2, 128] (for otherwise)
avgpool 5×5

32-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Table A.9. Hyperparameters of DS-Net

Configurations Values
Available ratio [0.125, 0.25, 0.5, 0.75, 1.0]

Activation function ReLU
Learning rate 1e-4

Temperature τ 0.005
Discount factor γ 0.99

Train frequency steps 12
Gradient steps per update 1

Batch size 60
Buffer size 1e+5
Timesteps 3e+7

time adjustments, we expand the number of low-level poli-
cies and modify the high-level policy to select a low-level
policy at every step. A set of low-level policies is generated
by utilizing the network architectures consisting of up to
ith layer of the biggest low-level policy network. The size
of the network output features varies depending on the num-
ber of low-level policies, thus the filter size of the last aver-
age pooling layer is adjusted accordingly. Detailed network
architecture is described in the Table A.10. The hyperpa-
rameter settings are detailed in the Table A.11.

Table A.10. Network architecture of RL-AA

Configurations Values
Activation function Swish

High-level policy

Layer 1
maxpool 4×4

[6×6, 2, 32] (for CARLA)
[6×6, 2, 64] (for otherwise)

Layer 2

maxpool 2×2
[6×6, 2, 64] (for CARLA)

[6×6, 2, 128] (for otherwise)
avgpool 5×5

Actor network 64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Critic network 64-d fc×2 (for CARLA)
256-d fc×2 (for otherwise)

Low-level policy

Layer 1
[3×3, 1, 32] (for CARLA)

[6×6, 2, 128] (for otherwise)
maxpool 2×2

Layer 2
[3×3, 1, 64] (for CARLA)

[6×6, 2, 256] (for otherwise)
maxpool 2×2

Layer 3
[3×3, 1, 96] (for CARLA)

[6×6, 2, 384] (for otherwise)
maxpool 2×2

Layer 4
[3×3, 1, 128] (for CARLA)
[6×6, 2, 512] (for otherwise)

maxpool 2×2
avgpool

Actor network 32-d fc×2 (for CARLA)
128-d fc×2 (for otherwise)

Critic network 32-d fc×2 (for CARLA)
128-d fc×2 (for otherwise)

Table A.11. Hyperparameters of RL-AA

Configurations Values
Number of layer for low-level policy [1, 2, 3, 4]

Efficiency coefficient 3e-5
Learning rate 1e-4

Temperature τ 1
Discount factor γ 0.99

Train frequency steps 1
Gradient steps per update 1

Batch size 60
Buffer size 1e+5
Timesteps 3e+7

C. Additional results
C.1. Inference time

All inference times for MoDeC used in the experiments
is the end-to-end value, which includes not only the base
network but also the module selection network and device
adapter. To clarify the impact of adjusting the inference time
of the base network on the model, Table A.12 provides a de-
tailed analysis of inference time for experiments conducted
on the Orin device.

C.2. Environment with varying time constraint

Table A.13 shows the performance with varying time con-
straints in CARLA. In the environment, the time constraint

Table A.12. Percentage of inference time in Nvidia Jetson AGX
Orin

Constraint Base network Module selection net. Device adapter
8 ms 4.91 ms / 62.6% 2.43 ms / 30.9% 0.50 ms / 6.4%

10 ms 6.93 ms / 70.1% 2.45 ms / 24.9% 0.50 ms / 5.0%
12 ms 8.84 ms / 74.9% 2.47 ms / 20.9% 0.50 ms / 4.2%
14 ms 10.80 ms / 78.4% 2.50 ms / 18.0% 0.50 ms / 3.6%
16 ms 11.64 ms / 79.5% 2.50 ms / 17.1% 0.50 ms / 3.4%

is sampled from a normal distribution with a specific mean
and standard deviation. We conduct experiments on two de-
vices with various mean and standard deviation settings.
As shown, our approach outperforms DS-net by 2.2% to
11.6%. Since MoDeC dynamically determines the module
combination based on task information and module utiliza-
tion, it achieves higher performance through more efficient
and flexible module selection compared to the ratio-based
slicing in DS-Net, showing a greater performance differ-
ence 5.4% ∼ 11.6% under intense time constraints.

Table A.13. Performance on CARLA with varying time con-
straints

Device Constraint (ms) DS-Net MoDeC
Mean Std. Success rate Success rate

Orin

10 2 45.8± 6.3% 51.2± 7.2%
12 1 75.0± 4.0% 77.2± 5.1%
12 2 69.3± 8.1% 75.1± 5.2%
12 4 67.1± 7.2% 71.9± 7.0%
14 2 75.1± 5.2% 79.3± 6.7%

Xavier

15 4 37.9± 9.1% 49.5± 7.9%
18 1.5 73.9± 4.3% 81.4± 4.2%
18 4 68.4± 8.3% 74.5± 6.1%
18 6 69.0± 6.5% 72.3± 7.1%
21 4 72.7± 5.8% 77.3± 6.1%

References
[1] Shaofeng Cai, Yao Shu, and Wei Wang. Dynamic rout-

ing networks. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 3588–3597, 2021. 2

[2] Chin-Jui Chang, Yu-Wei Chu, Chao-Hsien Ting, Hao-
Kang Liu, Zhang-Wei Hong, and Chun-Yi Lee. Re-
ducing the deployment-time inference control costs of
deep reinforcement learning agents via an asymmet-
ric architecture. In Proceedings of the 38th IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 4762–4768. IEEE, 2021. 3

[3] Alexey Dosovitskiy, German Ros, Felipe Codevilla,
Antonio Lopez, and Vladlen Koltun. Carla: An open
urban driving simulator. In Proceedings of the 1st
Conference on Robot Learning (CoRL), pages 1–16.
PMLR, 2017. 1

[4] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Matt Deitke,

Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-
thor: An interactive 3d environment for visual ai.
arXiv preprint arXiv:1712.05474, 2017. 1

[5] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan
Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In Proceedings of the 23nd
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 8607–8617, 2021. 3

[6] Lanlan Liu and Jia Deng. Dynamic deep neural net-
works: Optimizing accuracy-efficiency trade-offs by
selective execution. In Proceedings of the 34nd AAAI
Conference on Artificial Intelligence, 2018. 3

[7] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Proceedings
of the fourteenth international conference on artifi-
cial intelligence and statistics, pages 627–635. JMLR
Workshop and Conference Proceedings, 2011. 1

[8] Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and
Roozbeh Mottaghi. Visual room rearrangement. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021. 1

[9] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong
Wang. Multi-task reinforcement learning with soft
modularization. In Proceedings of the 34th conference
on neural information processing systems (NeurIPS),
pages 4767–4777, 2020. 2

[10] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan
Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning. In
Proceedings of the 4th conference on robot learning
(CoRL), pages 1094–1100. PMLR, 2020. 1

	. Environment settings
	. Meta-world
	. CARLA
	. AI2THOR

	. Implementations
	. MoDeC (Ours)
	. DRNet
	. D2NN
	. DS-Net
	. RL-AA

	. Additional results
	. Inference time
	. Environment with varying time constraint

