
Supplementary Material for “PostureHMR: Posture Transformation for 3D
Human Mesh Recovery”

1. More Ablation Experiments
The inference speed. To further understand the perfor-
mance of our method in terms of inference time, we con-
ducted the following additional comparative experiments.
Specifically, we infer the same image multiple times on the
same RTX 3090 GPU to get the average speed, and the
compared method distribution is HMDiff [3] and Virtual-
Marker [7]. HMDiff is a human mesh reconstruction algo-
rithm based on the diffusion model, and VirtualMarker is a
vertex regression method. As shown in Table 1, our method
achieves competitive results against diffusion model-like
methods, but is still slower than VirtualMarker, mainly due
to multiple iterations.

Method PostureHMR HMDiff VirtualMarker
FPS 19 18 24

Table 1. Inference speed comparison at RTX 3090 GPU.

Impact of the number of different iteration steps. To fur-
ther illustrate the selection of PostureHMR steps, we con-
ducted additional ablation experiments, changed the total
number of iteration steps and gave MPVE test results on the
3DPW and SURREAL data sets. From Table 2, we can ob-
serve that when the number of steps increases, the quality of
the reconstructed human mesh increases, showing smaller
improvement when increasing to 10. Therefore, we set the
number of iteration steps to 10 in the experiment.

Dataset 3DPW SURREAL
Steps 1 5 10 15 1 5 10 15

MPVE 78.2 76.5 75.4 75.3 44.5 43.0 42.1 42.1

Table 2. Evaluation result of hyperparameter steps k

Fair comparison. During the experiment, different meth-
ods may adopt different training strategies, making the ex-
perimental comparison potentially unfair. To further verify
the effectiveness of the paper’s method, we first list some
methods for comparison, as shown in Table 3. These meth-
ods use the same backbone (HRNet-w48), fine-tuned on
3DPW and approximate data set selection. Experimental
results show that our method achieves SOTA results.

In addition, considering the differences in the selection
of the comparative experimental data sets mentioned above,

Method Dataset MPVE
HMDiff COCO and MPII-Pseudo SMPL, 3DHP, UP-3D, H3.6M 82.4

CLIFF [5] COCO and MPII-Pseudo SMPL, 3DHP, H3.6M 81.2
VirtualMarker COCO-Pseudo SMPL, 3DHP, UP-3D, H3.6M 77.9

Zolly [9] COCO, 3DHP, PDHuman, HuMMan, LSPET, H3.6M 76.3
PostureHMR COCO-Pseudo SMPL, 3DHP, UP-3D, H3.6M 75.4

Table 3. Evaluation results on 3DPW test set.

we conducted a fairer comparison only using the 3DPW
dataset. The experimental results are shown in Table 4.

Method MPVE MPJPE PA-MPJPE
HybrIK [4] 114.5 91.1 67.2

FastMETRO [2] 152.8 136.1 92.5
VirtualMarker 101.32 87.74 54.77
PostureHMR 98.5 84.9 52.2

Table 4. Evaluation results on 3DPW test set.

Impact of feature fusion design. We conducted ablation
experiments on the feature fusion method on the SURREAL
dataset, and cross-attention [1] fusion of 2D and 3D mesh
vertex features. As shown in Table 5, the difference between
the two implementation methods is small.

Method MPVE MPJPE PA-MPJPE
Cross-attention 42.4 35.2 27.4
PostureHMR 42.1 35.3 27.4

Table 5. Evaluation results on the SURREAL test set.

Impact of coarse to fine strategy. To further verify the
selection of the mesh upsampling strategy, we conducted
ablation experiments. As shown in Table 6, the compari-
son method learns a matrix to achieve interpolation from
coarse vertices to fine mesh. Since both are essentially lin-
ear layers based on MLP, there is no major difference in the
experimental results.

Method MPVE MPJPE PA-MPJPE
Matrix learning 42.3 35.5 27.7
PostureHMR 42.1 35.3 27.4

Table 6. Evaluation results on the SURREAL test set.

More visualization results. Fig. 1 gives a visual com-
parison of our method with the parametric regression-based
CLIFF and vertex regression-based VirtualMarker (VM)
methods. Our method outperforms the other two methods
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（a）Mesh estimation results of image view. （b）Side view. 
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Figure 1. Qualitative comparison on in-the-wild images.

（b）Mesh estimation results of complex shapes. 

（a）Mesh estimation results of complex poses. 

Figure 2. More visualization of human mesh outputs using our method.

under challenging pose and shape inputs. In addition, we
give more visualization results in Fig. 2. The first row
shows that our algorithm can achieve better modeling re-
sults in challenging poses, and the second row gives more
complex shape situations.

2. More Discussion of Forward Pass

2.1. Preliminary: SMPL model.

The Skinned Multi-Person Linear model (SMPL) model
was proposed in [6], which is a general human body statis-
tical model. Given an initial pose mesh with 6890 vertices,
different human bodies can be described through shape pa-
rameters (β) and pose parameters (θ). Shape parameters in-
clude 10 values describing the shape of the character, such
as height, fatness, etc. The pose parameters are defined by



23 joint points and 1 root orientation, with a total of 72 pa-
rameters.

For an initial state SMPL model:

M(β0, θ0) = T (1)

Given the control parameters (βt, θt) input at time t, the new
mesh can be summarized as obtained through blend shape
and linear blend skinning.
Blend shape. It mainly converts the influence of shape and
pose on the initial model into a linear offset. The reason
why pose parameters also affect the initial model is because
the local expression of the human body is different in dif-
ferent poses. For example, the appearance of the belly is
different when sitting and standing. This implementation
process is:

Tb = T +Bs(βt) +Bp(θt) (2)

where Bs(·) and Bp(·) refer to the output offset relative to
the vertex by specifying parameters after model training.
Blend skinning. The previous calculation mainly designed
the changes of mesh vertices in the initial posture. Next,
skinning calculation is required. The so-called skinning is
to drive the vertex changes by moving the key points of the
bones. The direct relationship between a vertex and a bone
key point becomes a weight. The closer a vertex is to a spe-
cific bone point, the stronger its influence will be following
changes such as rotation/translation of the bone point. The
final mesh output can be achieved through the following:

M(βt, θt) = W (Tb(βt, θt), J(βt),W) (3)

where J(·) is the rest pose joints calculation function and
W is the blend weights. For the specific implementation of
blend shape and blend skinning, please refer to [6].

2.2. Limitation of linear interpolation.

Our method’s implementation of the forward process
mainly performs a simple linear process on the parameters
input by SMPL, which may produce non-anthropomorphic
postures. However, except for SURREAL, the angles of
pose rotation in other datasets are in the range [0, π]. There-
fore, most linear interpolation results are anthropomorphic.
To intuitively understand this problem, we give two sets of
visualization examples in Fig. 3. When the value range ex-
ceeds [0, π], the interpolation result will produce the result
of the footsteps falling into the body. This problem can be
solved using algorithms that reasonably interpolate poses,
such as Pose-ndf [8], which is another potential solution that
we will explore in future work.
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