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Supplementary Material

Appendix A provides more details of our work, such as
implementation details, loss functions, and details of the
dataset. In Appendix B and Appendix C, we provide more
experimental results, including the comparison between dif-
ferent methods and additional ablation studies. Finally, we
describe limitations of our method in Appendix D.

A. More details of REACTO
A.1. Loss functions

In addition to the reconstruction losses and sparse skinning
loss presented in the main paper, we incorporate a 3D cycle
loss [4, 6, 9] to ensure consistency between observation-to-
canonical and canonical-to-observation deformations. We
also leverage the consistency losses as implemented in PPR
[10] to ensure coherence between object and bones. Addi-
tionally, we apply an implicit geometric regularization term
[3] as follows:

Leikonal =
∑
X

(∥∇MLPSDF(X)∥2 − 1)2. (1)

A.2. Implementation details

The sparse skinning loss is incorporated after 2,000 iterations
when we can extract a coarse 3D mesh, which is essential for
locating the nearest vertices using KNN. The hyperparame-
ter γ, a temperature factor for softmax, decreases from 1 to
0.1 in the first 2,000 iterations and remains constant in the
subsequent iterations. η and ζ in Geodesic point assignment
are set to 0.3 and 0.2 respectively. The optimization takes
approximately 30 minutes on a single NVIDIA RTX 6000
Ada GPU (requires only 10G). The weights of loss terms are
tuned to have similar initial magnitudes, ensuring a balanced
optimization process. We conduct all the experiments follow-
ing PPR’s setting, all the comparing methods are optimized
for 4,000 iterations.

A.3. Dataset details

For the real-world videos employed in this work, the frame
counts are indicated in Table 1. These videos were casually
captured using a phone camera.

The synthetic videos (laptop, faucet, and box) used in the
appendix undergo the same processing steps as discussed
in the main paper, originating from the PartNet-Mobility
dataset [1, 5, 8]. Each video is rendered with 100 frames.

B. Additional comparison results
In this section, we show the qualitative comparison results
of our method with BANMo [9], MoDA [6], and PPR [10]

on USB and stapler in Figure 1. BANMo and MoDA strug-
gle with complete shape reconstruction and always produce
non-smooth surfaces. The results of PPR are smoother but
with inaccuracies in motion modeling. In contrast, our RE-
ACTO outperforms these methods, excelling in the shape
and motion reconstruction of articulated objects.

Additionally, we also compare our method (rig on bones)
with BANMo, MoDA, and PPR using rigging on joints (rigs
positioned at the ends of each rigid part and the hinge joints)
in Table 2 and Figure 3. Our method consistently outper-
forms them both qualitatively and quantitatively. The rigid
parts often appear influenced by more than one joint, result-
ing in seams (BANMo on real-scissors, PPR on real-scissors
and real-stapler), and distortion (PPR on real-faucet and
real-laptop). Some examples are highlighted in red.

C. Additional ablation studies
In this section, we extend our ablation studies to include
additional categories from the PartNet-Mobility dataset [1, 5,
8], such as laptop, faucet, and box, as presented in Table 3.

When comparing our method with other deformation
models, including displacement field [7], Real-NVP [2],
and rigid skinning, our approach consistently outperforms
them quantitatively. For the qualitative comparison on real-
handle and faucet as shown in Figure 3, our method produces
high-fidelity results, while other deformation models always
exhibit artifacts during motion.

Furthermore, we explore different rigging strategies, com-
paring rig on bones with rig on joints, as shown in Table 3
and Figure 4. Our bone-based rigging proves more suitable
for modeling the motion of general articulated objects.

D. Limitations
One limitation of this work is the reconstruction quality on
the unseen side. Our method may struggle to accurately
reconstruct parts that are not visible. For example, when
considering a pair of glasses, if only one side of the lens is
visible, the 3D reconstructed results for the lens may appear
recessed. The reconstruction results improve when both
sides are visible, as demonstrated in Figure 5. This factor
may also lead to relatively low performance in quantitative
evaluations when compared to the ground truth.

Another limitation is illustrated in Figure 6 in the main
paper and Figure 1, where the gray part of the USB should
not be connected altogether. However, our method fails to
learn this hollow component.



Table 1. The number of frame of all real-world videos in this work.

Data real-stapler real-scissors real-faucet real-laptop real-nail clipper real-glasses real-handle real-clamp

Frame 64 41 132 240 49 203 51 64

Input frames PPR OursBANMo MoDA

Figure 1. Qualitative comparison of our method with BANMo [9], MoDA [6] and PPR [10] on USB and stapler. BANMo and MoDA
struggle with complete shape reconstruction and always produce non-smooth surfaces. The results of PPR are smoother but with inaccuracies
in motion modeling. In contrast, REACTO outperforms these methods, excelling in the shape and motion reconstruction of articulated
objects.
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Table 2. Quantitative comparison between different methods. Our method defines rig on bones, BANMo, MoDA, and PPR define rig on
joints.

Method USB stapler scissors

CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑)

BANMo 16.8 73.0 48.6 20.9 59.8 39.8 14.9 72.8 41.8
MoDA 17.3 71.1 43.7 18.1 67.6 40.9 15.5 71.4 40.1

PPR 16.7 70.8 44.6 18.4 57.6 24.0 16.2 69.2 37.2
Ours 15.3 78.6 51.5 14.3 75.5 42.7 14.0 78.2 43.9

Table 3. Quantitative ablation studies. We evaluate different settings on synthetic data and measure their performance using Chamfer
distance (cm, ↓) and F-score(%, ↑) as the metrics. Our method outperforms the displacement field, Real-NVP, rigid skinning and rig on
joints across various data.

Method laptop faucet box

CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑)

Displacement 30.1 34.6 16.2 29.8 26.8 8.6 22.9 49.0 21.2
Real-NVP 23.4 57.3 32.1 18.7 59.1 30.5 21.7 54.7 25.6

Rigid 24.9 59.8 38.7 14.7 73.7 38.1 25.8 54.3 33.5
Rig on joints 27.4 54.9 34.6 18.8 60.6 32.4 25.6 55.4 30.8

Ours 13.8 80.0 53.1 14.0 76.5 41.5 18.0 66.2 39.8



Input frames PPR OursMoDABANMo

Figure 2. Qualitative comparison of our method (rig on bones) with BANMo [9], MoDA [6] and PPR [10] defining rig on joints.
When defining rig on joints for these methods (3 joints for real-stapler, real-faucet, and real-laptop, 5 for real-scissors), the rigid parts
often appear influenced by more than one joint, resulting in seams (BANMo on real-scissors, PPR on real-scissors and real-stapler), and
distortion (PPR on real-faucet and real-laptop). Some examples are highlighted in red.
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Figure 3. Ablation studies on deformation models. We compare our method with other deformation models, including displacement field
[7], Real-NVP [2], and rigid skinning on real-handle and faucet. Displacement field and Real-NVP struggle to maintain the object shape
during motion, and rigid skinning often introduces unwanted discontinuities. In contrast, our method consistently reconstructs high-fidelity
results.
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Figure 4. Rig on joints vs Rig on bones (ours). Defining the rig on joints (5 joints for real-clamp and 3 joints for stapler) may result in
bending shapes and discontinuities (in the red circle). Our rig on bones design enhances the rigidity and motion integrity of each component.
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Figure 5. If only one side of the lens is visible, the 3D reconstructed results for the lens may appear recessed. The reconstruction results
improve when both sides are visible
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