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Supplementary Material

7. Proof of Theorem and lemma in Sec. 4
7.1. Proof of Theorem 1

Proof.

[x′, y′] = D(x, y) = [f(x, y), g(x, y)] (33)

J = Jacob(D) =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
, (34)

dAx′y′ =
√
det(G)dAx′y′ =

√
det(J⊤J)dAx′y′ = det(J)dAx′y′ , (35)

|Ax′y′ |Mm,n
x′y′ =

∫
(x′)m(y′)ndAx′y′ , (36)

=

∫
f(x, y)ng(x, y)m det(J)dAxy. (37)

The positive definite matrix G is called The First Fundamental Form or Riemannian Metric. Since f(x, y), g(x, y), and
det(J) are polynomial functions of x and y, Mn,m

x′y′ can be expressed by a linear combination of M i,j
xy .

|Ax′y′ |Mn,m
f =

∫ ∑
ij

cijx
iyjdAxy (38)

= |Axy|

 1

|Axy|

∫ ∑
ij

cijx
iyjdAxy

 (39)

= |Axy|
∑
ij

cij

[
1

|Axy|

∫
xiyjdAxy

]
(40)

= |Axy|
p∑

i=0

q∑
j=0

cijM
i,j
xy . (41)

7.2. Proof of Theorem 2

Proof.

xn = cosαxs − sinαys (42)
yn = sinαxs + cosαys (43)
sn = x2

n + y2n = x2
s + y2s = ss (44)

dAn = det(J)dAs

= (cos2 α+ sin2 α)dAs = dAs (45)
∴ |An| = |As| (46)

vr
n =


1

|An|
∫
xns

r
ndAn

1
|An|

∫
yns

r
ndAn

1
|An|

∫
srndAn

 =


1

|As|
∫
(cosαxs − sinαys)s

r
sdAs

1
|As|

∫
(sinαxs + cosαys)s

r
sdAs

1
|As|

∫
srsdAs

 (47)

=

cosα − sinα 0
sinα cosα 0
0 0 1




1
|As|

∫
xss

r
sdAs

1
|As|

∫
yss

r
sdAs

1
|As|

∫
srsdAs

 (48)
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7.3. Proof of Lemma 3

Proof.

Im,n =
1

2π

∫ 2π

0

cosm−1 θ cos θ sinn θdθ (49)

=
1

2π

[
1

n+ 1
cosm−1 θ sinn+1 θ

]2π
0

+
m− 1

n+ 1

1

2π

∫
cosm−2 θ sinn+1 θ sin θdθ (50)

=
m− 1

n+ 1
Im−2,n+2 (51)

Similarly,

Im,n =
n− 1

m+ 1
Im+2,n−2 (52)

By Eqs. (51) and (52), we can reduce m or n to zero or one. However, I1,n and Im,1 is always zero as follows.

I1,n =
1

2π

∫ 2π

0

cos θ sinn θdθ =

[
1

n+ 1
sinn+1 θ

]2π
0

= 0, (53)

Im,1 =
1

2π

∫ 2π

0

cosm θ sin θdθ =

[
− 1

m+ 1
cosm+1 θ

]2π
0

= 0. (54)

Therefore, we only need to consider the even case when m is 2i and n is 2j. Otherwise, Im,n = 0.
I0,n also has a reduction formula as

I0,n =
1

2π

∫ 2π

0

sinn θdθ =
1

2π

∫ 2π

0

sinn−1 θ sin θdθ (55)

=
1

2π

[
− cos θ sinn−1 θ

]2π
0

+
n− 1

2π

∫ 2π

0

sinn−2 θ cos2 θdθ (56)

=
n− 1

2π

∫ 2π

0

sinn−2 θ(1− sin2 θ)dθ (57)

= −(n− 1)I0,n + (n− 1)I0,n−2, (58)

∴ I0,n =
n− 1

n
I0,n−2. (59)

Using Eqs. (51) and (59), the analytic solution of I2i,2j is obtained.

I2i,2j =
2i− 1

2j + 1

2i− 3

2j + 3
· · · 1

2j + 2i− 1
I0,2j+2i (60)

=
2i− 1

2j + 1

2i− 3

2j + 3
· · · 1

2j + 2i− 1

2i+ 2j − 1

2i+ 2j

2i+ 2j − 3

2i+ 2j − 2
· · · 1

2
(61)

=
(2i− 1)(2i− 3) · · · (1)(2j − 1) · · · (1)

(2i+ 2j)(2i+ 2j − 2) · · · (2)
(62)

=
(2i− 1)(2i− 3) · · · (1)(2j − 1) · · · (1)

(2i+ 2j)(2i+ 2j − 2) · · · (2)
(2i)(2i− 2) · · · (2)(2j)(2j − 2) · · · (2)
(2i)(2i− 2) · · · (2)(2j)(2j − 2) · · · (2)

(63)

=
(2i)!(2j)!

(i+ j)!i!j!

1

22i+2j
(64)

The Eq. (64) is a symmetric equation of i and j. The factorial term such as (i + j)! readily induces numerically unstable;
therefore, we convert the factorial term to a combination term such as

(
i+j
i

)
.

(2i)!(2j)!

(i+ j)!i!j!

1

22i+2j
=

(2i)!(2j)!

(2i+ 2j)!

(2i+ 2j)!

(i+ j)!(i+ j)!

(i+ j)!

i!j!

1

22i+2j
=

(
2i+2j
i+j

)(
i+j
i

)(
2i+2j
2i

)
22i+2j

. (65)

Another advantage of combination terms is that we can develop a combination matrix in advance using Pascal’s triangle.
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7.4. Proof of Lemma 4

Proof.

x0 = ar cos θ, (66)
y0 = br sin θ, (67)

Mm,n
0 =

1

πab

∫
xm
0 yn0 dA0 (68)

=

∫ 2π

0

∫ 1

0

ambnrm+n cosm θ sinn θ rab drdθ (69)

=
am+1bn+1

πab(m+ n+ 2)

∫ 2π

0

cosm θ sinn θdθ (70)

=
ambn

1 + (m+ n)/2
Im,n. (71)

7.5. Proof of Theorem 5

Proof.

dAs = dA0, (72)

1

|As|

∫
(x2

s + y2s)
rdAs =

1

|As|

r∑
k=0

(
r

k

)∫
x2k
s y2r−2k

s dA0 (73)

=
1

|As|

r∑
k=0

(
r

k

)∫
(x0 + tx)

2k(y0 + ty)
2r−2kdA0 (74)

=

r∑
k=0

(
r

k

) 2k∑
p=0

2r−2k∑
q=0

(
2k

p

)(
2r − 2k

q

)
t2k−p
x t2r−2k−q

y Mpq
0 (75)

=

2r∑
p=0

2r−p∑
q=0

Mpq
0

⌊r−q/2⌋∑
k=⌈p/2⌉

(
r

k

)(
2k

p

)(
2r − 2k

q

)
t2k−p
x t2r−2k−q

y (76)

Since Mpq
0 is zero when p or q is odd number, we can rewrite the above equation using p = 2i and q = 2j. Using the above

equations, we obtain Eqs. (77)–(79).

vr
s[2] =

1

|As|

∫
(x2

s + y2s)
rdAs =

r∑
i=0

r−i∑
j=0

M2i,2j
0

r−j∑
k=i

(
r

k

)(
2k

2i

)(
2r − 2k

2j

)
t2k−2i
x t2r−2k−2j

y (77)

vr
s[0] =

1

|As|

∫
xs(x

2
s + y2s)

rdAs =
1

|As|

k=r∑
k=0

(
r

k

)∫
(x0 + tx)

2k+1(y0 + ty)
2r−2kdA0

=

r∑
k=0

(
r

k

) 2k+1∑
p=0

2r−2k∑
q=0

(
2k + 1

p

)(
2r − 2k

q

)
t2k−p+1
x t2r−2k−q

y Mpq
0

=

r∑
i=0

r−i∑
j=0

M2i,2j
0

r−j∑
k=i

(
r

k

)(
2k + 1

2i

)(
2r − 2k

2j

)
t2k−2i+1
x t2r−2k−2j

y (78)

Similarly,

vr
s[1] =

1

|As|

∫
ys(x

2
s + y2s)

rdAs =

r∑
i=0

r−i∑
j=0

M2i,2j
0

r−j∑
k=i

(
r

k

)(
2k

2i

)(
2r − 2k + 1

2j

)
t2k−2i
x t2r−2k−2j+1

y (79)
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8. Derivation details

8.1. (Sec. 4.1) Geometric Feature of Ellipse

When the Q represents an ellipse, the geometric features of the ellipse (i.e., center point and major/minor axis length) could
be obtained from the matrix Q as follows.

Q ≜

a b d
b c e
d e f

 (80)

h1 = (ac− b2), (81)

h2 =
√
(a− c)2 + 4b2, (82)

tx = (be− cd)/h1, (83)
ty = (bd− ae)/h1, (84)

m0 =

√
2 det(Q)

h1(a+ c− h2)
, (85)

m1 =

√
2 det(Q)

h1(a+ c+ h2)
, (86)

α = tan−1

(
c− a+ h1

−2b

)
. (87)

Here, tx and ty are the center point of the ellipse, and m0 and m1 are the lengths of ellipse axes. The angle between the
x-axis and the ellipse axis, whose length is mo, is denoted as α in Fig. 3

8.2. (Sec. 4.2) Tracking moment under distortion

The nd is the number of distortion parameters defined in Eq. (11).

s = x2
n + y2n, (88)

k = 1 + d1s+ d2s
2 + d3s

3 + ...+ dns
n =

nd∑
i=0

dis
i (d0 = 1), (89)

xd = kxn (90)
yd = kyn, (91)

dAd =
√
det(G)dAn (92)√

det(G) =

√
det(J⊤J) = det(J) =

∣∣∣∣∣ ∂xd

∂xn

∂xd

∂yn
∂yd

∂xn

∂yd

∂yn

∣∣∣∣∣ (93)

=

∣∣∣∣∣k + 2x2
n
∂k
∂s 2xnyn

∂k
∂s ,

2xnyn
∂k
∂s k + 2y2n

∂k
∂s

∣∣∣∣∣ = k(k + 2s
∂k

∂s
) =

nd∑
i=0

dis
i

nd∑
i=0

(2i+ 1)dis
i. (94)
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Using the above equations, we obtain

|Ad|
|An|

=
1

|An|

∫
dAd =

1

|An|

∫ √
det(G) dAn =

1

|An|

∫ ( nd∑
i=0

dis
i

)(
nd∑
i=0

(2i+ 1)dis
i

)
dAn. (95)

|Ad|M1,0
d =

∫
xd dAd =

∫
kxn

√
det(G) dAn =

∫
xnk

2(k + 2s
∂k

∂s
) dAn (96)

M1,0
d =

|An|
|Ad|

1

|An|

∫
xn

(
nd∑
i=0

dis
i

)2( nd∑
i=0

(2i+ 1)dis
i

)
dAn. (97)

|Ad|M0,1
d =

∫
yd dAd =

∫
ynk

2(k + 2s
∂k

∂s
) dAn, (98)

M0,1
d =

|An|
|Ad|

1

|An|

∫
yn

(
nd∑
i=0

dis
i

)2( nd∑
i=0

(2i+ 1)dis
i

)
dAn. (99)

We can reduce the computational cost as follows.

(
nd∑
i=0

dis
i

)(
nd∑
i=0

(2i+ 1)dis
i

)
=

nd∑
i=0

nd∑
j=0

(2i+ 1)didjs
i+j (100)

=

2nd∑
r=0

w0r · sr,

w0r =

min(r,nd)∑
i=max(0,r−nd)

(2i+ 1)didr−i

 (101)

(
nd∑
i=0

dis
i

)2( nd∑
i=0

(2i+ 1)dis
i

)
=

nd∑
i,j,k=0

(2i+ 1)didjdks
i+j+k (102)

=

3nd∑
r=0

w1r · sr

w1r =

min(r,nd)∑
i=max(0,r−2nd)

(2i+ 1)di

min(r−i,nd)∑
j=max(0,r−i−nd)

djdr−i−j

 (103)

Then, Eqs. (95) to (99) are rewritten as

|Ad|
|An|

=

2nd∑
r=0

w0r

[
1

|An|

∫
srdAn

]
(104)

M1,0
d =

|An|
|Ad|

3nd∑
r=0

w1r

[
1

|An|

∫
xns

rdAn

]
(105)

M0,1
d =

|An|
|Ad|

3nd∑
r=0

w1r

[
1

|An|

∫
yns

rdAn

]
(106)

5



8.3. (Sec. 4.2) The centroid of the distorted ellipse on the image plane

[
xi

yi

]
=

[
fx η cx
0 fy cy

]xd

yd
1

 (107)

det(J) =

∣∣∣∣fx η
0 fy

∣∣∣∣ = fxfy, (108)

|Ai| = fxfy|Ad|, (109)

x̄i ≜ M1,0
i =

1

|Ai|

∫
xidAi =

|Ad|
|Ai|

1

|Ad|

∫
(fxxd + ηyd + cx)fxfydAd (110)

= fxM
1,0
d + ηM0,1

d + cx (∵ |Ai| = fxfy|Ad|), (111)

ȳi ≜ M0,1
i = fyM

0,1
d + cy, (112)[

x̄i

ȳi

]
=

[
fx η cx
0 fy cy

]x̄d

ȳd
1

 . (113)

8.4. Robustness of the first moment

As mentioned at Sec. 4.1, a conic is defined with second-order moments. Using the above results, it is possible to calculate
the second-order moments of distorted conic in the image plane. However, the boundary blur effects easily contaminate
high-order moments. For instance, if there is some dilation or erosion in the ellipse, the major and minor axis lengths
become shorter or longer while the centroid of the shape is invariant. For calibration, the unbiased estimator and accurate
measurement are both essential; therefore, utilizing only the first momentum is more beneficial for accurate calibration.
Another advantage of the first moment is its robustness to the image noise. Assume that there is some noise in the boundary
points of the shape and the noise follows a normal distribution whose mean is zero and variance is σ2, then the variance of
the first moment of the shape is reduced by 1/n. For boundary points following Xi ∼ N (µ, σ2),

M1
X =

1

n

∑
i

Xi (first moment) (114)

V ar(M1
X) = V ar(

1

n

∑
i

Xi) (115)

=
1

n2
V ar(

∑
i

Xi) =
nV ar(Xi)

n2
=

σ2

n
.

This is one of the reasons why the circular pattern is more robust to the boundary blur effect than the checkerboard, whose
control points are directly obtained from the single point. This finding will be demonstrated via a set of experiments in
Sec. 5.1.

9. Experiments details
9.1. Characteristics of TIR camera

The thermal infrared (TIR) camera is a distinctive vision sensor for extreme environments. The TIR camera is limited in
recognizing colored patterns because it distinguishes objects by infrared energy, not by color; hence, a TIR camera needs
a particular target for calibration. Some thermal-specific calibration targets in the literature include a printed circuit board
(PCB) composed of different heat conductivity squares [24]. However, even with this target, achieving high calibration
accuracy is onerous. The thermal images often include low resolution, high distortion, and blunt boundaries, possibly leading
to inaccurate control point detection. For example, the temperature discrepancy between two adjacent objects is decreased
by conduction and radiation. This phenomenon causes blunt boundaries as illustrated in Fig. 7.

9.2. Vector representation of reprojection errors on the RGB image

We visualized the reprojection error per the actual distance from the camera to the calibration target in Fig. 5. To provide more
intuition about the distribution in spatial aspect, we performed the calibration using 20 images and scattered the reprojection
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(a) RGB Image (b) Thermal-IR Image

Figure 7. The checkerboard pattern captured from the RGB camera (left) and TIR camera (right). Compared to RGB images, the
boundary is highly blunt when captured from TIR. Severe distortion can also be observed in the thermal images
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Figure 8. Visualization of reprojection error vector. We collected 60 images and scattered 720 reprojection error vectors of the control
points on the image plane. While our method shows low reprojection error across the entire image area, other methods include larger error
vectors. For visualization, the error vectors are scaled up 50 times.

error vector on the image plane. Fig. 8 is the result obtained by repeating this procedure three times. In our method, it is
observed that the magnitude of the error vector remains small regardless of the depth or 2D position in the image. In contrast,
significantly larger error vectors are observed at closer distances for the checkerboard pattern. This phenomenon results
from the measurement noise of control points, which increases at closer distances. For the remaining two methods based on
circular patterns (i.e. conic-based and point-based), locally consistent large error vectors are observed. This local consistency
indicates that these error vectors stem from the estimator’s bias rather than measurement noise.

9.3. Analytic solution of T o
t and Tm

c

X = T o
t , (116)

Y = Tm
c , (117)

Tm
oiX = Y T c

ti (118)

For obtaining optimal solution of X and Y , we first decouple X and Y using Eq. (118) as

(Tm
oj )

−1Tm
oiX = X(T c

tj )
−1T c

ti for all (i, j) pair (119)

Tm
oj (T

m
oi)

−1Y = Y T c
tj (T

c
ti)

−1 for all (i, j) pair (120)
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Therefore, the remaining part is to solve the AiX = XBi problem for i = 1 ∼ n. According to the paper [21], this problem
has a closed-form solution.

X =

[
Rx tx
0⊤ 1

]
=

[
exp([wx]) tx

0⊤ 1

]
, (121)

Ai =

[
exp([wai

]) tai

0⊤ 1

]
Bi =

[
exp([wbi ]) tbi

0⊤ 1

]
, (122)

P =
∑
i

wbiw
⊤
ai
, (123)

R̂x = (M⊤M)−1/2M⊤, (124)

C =


I −Ra1

I −Ra2

· · ·
I −Ran

 , d =


ta1

− R̂xtb1
ta2

− R̂xtb2
· · ·

tan
− R̂xtbn

 , (125)

t̂x = (C⊤C)−1C⊤d. (126)
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