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Video name
Number of

persons
SelfPose3d VoxelPose

AP25 AP50 AP100 MPJPE AP25 AP50 AP100 MPJPE

160906 ian5 2 54.1 86.5 94.1 25.9 65.7 85.8 94.4 24.0
160422 haggling1 3 56.0 95.3 98.0 23.8 86.2 98.0 99.5 17.2

160906 band4 3 58.6 98.9 99.0 24.7 98.1 99.6 99.8 15.4
160906 pizza1 6 48.6 97.7 99.7 24.7 71.3 98.5 99.9 20.7

All videos 2-6 55.1 96.4 98.5 24.5 81.8 98.0 99.4 18.3

Table 8. Video-level test results on the Panoptic dataset.

7. Additional Experiments

7.1. Effect of number of persons

To evaluate the effect of different numbers of persons, we
present the video-level results of SelfPose3d and VoxelPose
on the Panoptic test set, as each video contains a different
number of persons. As shown in Table 8, the variance of
VoxelPose’s performance is larger, and there is no strong
correlation between the number of persons and the mod-
els’ performance. We also observe that the occlusion is still
the key factor because the video “160906 ian5” is of a kid
playing with a woman, but he is heavily occluded due to his
height, resulting in lower performance.

7.2. Cross-scene generalization

To test the cross-scene generalization ability of SelfPose3d,
we compare it with fully-supervised VoxelPose [57] and
MvP [63] in two directions.

From Panoptic to Campus/Shelf. In this part, Self-
Pose3d and VoxelPose are trained on the Panoptic dataset
with 5 views, and then tested on the Campus and Shelf
dataset without fine-tuning. For MvP, we use the provided
best models. As shown in Table 9, SelfPose3d performs
better than VoxelPose and MvP, showing better cross-scene
generalization from a large dataset to a smaller dataset. The
significant gap on the Campus dataset also shows that Self-
Pose3d is more robust to the number of camera views.

From Campus/Shelf to Panoptic. For SelfPose3d, we
show the self-supervised learning result on the Panoptic
dataset as it requires no 3D ground-truth labels. For Vox-
elPose and MvP, since they cannot be trained with Campus
and Shelf datasets because of smaller dataset size and the
noisy 3D ground-truth labels, we follow the original papers’
training strategy, i.e., for VoxelPose, training using the syn-
thetic Campus/Shelf dataset by randomly placing 3d poses
of the Panoptic dataset in the Campus/Shelf 3D space; for
MvP, using the provided MvP model, first trained on the
Panoptic dataset and then fine-tuned on Shelf dataset. We
test the above VoxelPose and MvP model, trained on the
Campus/Shelf datasets, back on the Panoptic test set. As

Methods
Shelf (5 camera views) Campus (3 camera views)

Actor 1 Actor 2 Actor 3 Average Actor 1 Actor 2 Actor 3 Average

VoxelPose 99.5 93.5 97.8 96.9 93.1 86.5 93.2 90.9
VoxelPose∗ 94.6 91.4 97.5 94.5 0.0 0.3 0.0 0.1

MvP 99.3 95.1 97.8 97.4 98.2 94.1 97.4 96.6
MvP∗ 3.51 4.32 15.9 7.91 0.41 0.05 0.43 0.30

SelfPose3d 93.7 94.3 97.7 95.2 78.2 8.0 40.9 42.3

Table 9. Results (in PCP) on Shelf and Campus test set without
fine-tuning. (1) SelfPose3d is trained on the Panoptic dataset with-
out using GT labels. (2) VoxelPose and MvP are with fine-tuning,
and VoxelPose∗ and MvP∗ are without fine-tuning.

Methods AP25 AP50 AP100 MPJPE

VoxelPose (Campus) 0.0 0.0 0.0 inf
VoxelPose (Shelf) 0.0 0.0 0.0 350.6

MvP (Shelf) 0.0 0.0 0.0 395.3

SelfPose3d 55.1 96.4 98.5 24.5

Table 10. Results on the Panoptic test set. (1) VoxelPose is trained
on synthetic Campus/Shelf dataset. (2) MvP is firstly trained on
the Panoptic dataset and then fine-tuned on Shelf dataset. (3) Self-
Pose3d is trained on the Panoptic dataset in a self-supervised way.

λ AP25 AP50 AP100 MPJPE

0.001 28.4 93.5 97.4 28.7
0.01 33.6 95.1 97.7 27.7
0.1 21.8 79.2 92.4 34.0
1.0 2.71 44.0 85.3 48.3

Table 11. Ablation study on λ in Eq. (11), where we train each
model for 5 epochs without adding L1 loss attention.

shown in Table 10, VoxelPose and MvP fail to detect any
3d pose, although they have used 3D ground-truth labels
from the Panoptic dataset in the first place. In other words,
they are severely overfitted on the camera poses of the train-
ing set. The experiment shows the ability of SelfPose3d to
address large-scale unseen datasets.

7.3. Ablation study on adding L1 joint loss

As mentioned in Sec. 4.2, it is more likely to diverge when
training the model using L1 joint loss solely. However,
based on the visualization of the output 3d poses in the train-
ing process (see Figure 5), we find that L1 loss can help the
model generate a human-shape pose much faster than L2

loss in the early training stage. It is reasonable because L1

loss provides a direct supervision on joint coordinates while
L2 loss doesn’t. Thus we assume that L1 loss is helpful for
more precise prediction, and conduct an ablation study on
merging it with L2 loss in Table 11. Based on the results,
we set λ in Eq. (11) to 0.01.



Figure 5. Comparing the visualization of the output 3d poses during epoch 1, using L2 heatmap loss and L1 joint loss respectively.

σ AP25 AP50 AP100 MPJPE

0.01 - - - -
0.1 36.6 95.1 97.9 26.6
1.0 32.5 94.3 97.7 27.6

Table 12. Ablation study on σ in Eq. (11), where we train each
model for 5 epochs using L2 loss solely with ResNet-18 based
attn net2d.

Backbone AP25 AP50 AP100 MPJPE

ResNet-18 36.6 95.1 97.9 26.6
ResNet-34 37.2 95.2 97.7 26.9
ResNet-50 26.9 91.6 97.4 29.9
ResNet-50∗ 24.5 91.9 97.4 30.2

Table 13. Ablation study on the backbone network of attn net2d,
where we train each model for 5 epochs using L2 loss solely with
σ=0.1. ∗ means shared backbone with heatmap net2d.

7.4. Ablation study on L2 loss attention

There are two aspects affecting the supervision attention for
L2 loss: the weight σ of lattn in Eq. (11) and the backbone.
We first use ResNet-18 as the backbone, and conduct ex-
periments about σ in Table 12. When we set σ to 0.01, the
model doesn’t converge because the output of attn net2d is
almost zero. Therefore, we set σ in Eq. (11) to 0.1.

Afterwards, we try to deepen the architecture of
attn net2d backbone, and examine whether attn net2d and
heatmap net2d can share weights. Table 13 shows that
ResNet-18 is sufficient, and sharing weights degrades the
performance.

7.5. Robustness of SelfPose3d

In order to test the robustness of our methods, we train Self-
Pose3d using fewer camera views of the Panoptic dataset.
As shown in Table 14, the performance of SelfPose3d
steadily reduces when we decrease the number of camera
views to 3.

Methods Views AP25 AP50 AP100 MPJPE

VoxelPose [57] 5 83.6 98.3 99.8 17.7
VoxelPose [57] 3 58.9 93.9 98.4 24.3

SelfPose3d (ours) 5 55.1 96.4 98.5 24.5
SelfPose3d (ours) 4 31.1 89.6 96.7 30.2
SelfPose3d (ours) 3 10.4 66.1 90.4 43.5

Table 14. Results on the Panoptic dataset with different number of
camera views.

Method root net input AProot
50 AProot

100 MPJPEroot

VoxelPose all heatmaps 41.0 99.0 49.3
VoxelPose root-heatmaps 34.0 99.0 50.0

SelfPose3d root-heatmaps 35.2 92.3 54.9

Table 15. The rationale for using root-heatmaps as input to the
root net for 3d roots localization. Training VoxelPose model with
only root-heatmaps obtains nearly the same performance. Self-
Pose3d trained using synthetic root-heatmaps with root consis-
tency loss also reaches comparable performance. Here AProot

50 ,
AProot

100 , and MPJPEroot are calculated only for the root joint.

7.6. Root localization with only root-heatmaps

We use the similar architecture compared to VoxelPose for
our SelfPose3d approach. The only architectural change
in the SelfPose3d w.r.t VoxelPose is using only the root-
heatmaps as input to the root net for root localization. This
architectural change has enabled us to learn the root net pa-
rameters from synthetic 3d roots. Table 15 shows the results
for root localization using only the root-heatmaps v.s all the
heatmaps for VoxelPose and SelfPose3d. We observed a
minor decrease in the performance for both the approaches,
confirming our hypothesis that using only 2d root-heatmaps
is sufficient for 3d root localization.



Figure 6. Visualization of the attention heatmaps. (a) The man in front of the suited man is entirely occluded, and we barely see the
attention heatmaps focus on him. (b) The man is partially occluded, as we can see his head, shoulder and arm. The attention heatmaps are
trying to infer the occluded part (e.g. mid-hip).

7.7. Attention heatmap visualization

To have a clearer view of the role that the attn net2d plays
in SelfPose3d, we visualize the attention heatmaps of cer-
tain views in Figure 6. When there’s an entire occlusion,
attn net2d tends to ignore the occluded person. When
there’s a partial occlusion, attn net2d tends to infer the oc-
cluded part. The visualization explains the better perfor-
mance when adding adaptive supervision attention.

7.8. Confidence threshold for pseudo labels

To investigate whether we need to filter out the pseudo la-
bels with low confidence scores, we generate two sets of
labels: the ones with no confidence threshold are called the
soft labels, and the ones with a 0.7 confidence threshold on
the joints are called the hard labels. We train our model with
each label set under the same experiment setting, and the re-
sults are shown in Table 16. Our main takeaways are: (1)
the model trained with hard labels performs slightly better
at the end (especially on the AP25 index); (2) however, the
model is more likely to collapse when we train it with hard
labels. Therefore, we propose to train the model with soft
labels at the beginning, and then fine-tune it with hard labels
in the last 2 epochs. Table 16 shows that the proposed strat-
egy can obtain the best result, with a stable training process.

7.9. Failure cases

Figure 7 shows some failure cases from our approach com-
pared to the fully-supervised VoxelPose. Top row of Fig-
ure 7 shows two 3d poses for a single person. Pseudo 2d
poses used in our approach contains the poses of the people

Method
Pseudo label

category AP25 AP50 AP100 MPJPE

SelfPose3d
soft 51.6 96.7 98.6 24.8
hard 54.2 96.4 98.6 24.6

soft & hard 55.1 96.4 98.5 24.5

Table 16. Comparing the models trained with (1) soft pseudo la-
bels solely, (2) hard pseudo labels solely, and (3) two sets of labels,
respectively. For the soft & hard training, we only use the hard la-
bels in the last 2 epochs.

SelfPose3d VoxelPose

Figure 7. Failure cases from our approach compared to fully-
supervised VoxelPose. The top row shows the two 3d poses for
a single person, and the bottom row shows the 3d pose for a per-
son outside the dome. Best viewed in color.

outside the dome, whereas the ground truth 2d and 3d poses
are curated to remove the persons outside the dome. There-
fore, our approach tries to infer 3d poses for the persons
outside the dome (see bottom row of Figure 7).


