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1. More implementation Details

Task specific tokenizers. Each tokenizer’s output is di-
rected to a shared transformer encoder. Text is processed
using a BPE tokenizer [37], similar to the approach in
Uniperceiver-v2, converting text into word embeddings.
Image modalities like RGB, infrared, and X-Ray are tok-
enized using an image patch tokenizer [11]. Video pro-
cessing employs the method from [6], while point clouds
are handled as per [48]. For audio, the spectrogram is tok-
enized using the same technique as for images [11]. Time
series data tokenization follows [44], and for tabular data,
the approach from [23] is utilized.
Task heads. For the heads of downstream tasks, we em-
ploy ViT-Tiny, coupled with standard loss functions tai-
lored to various tasks. More specifically, we utilize differ-
ent loss functions depending on the task: (i) For classifi-
cation involving images, text, and point clouds, we follow
the approach outlined in [10]. For video, the methodology
from [4] is applied, and for audio, we adopt the loss func-
tion from [21]. (ii) In the case of image and point cloud
segmentation tasks, we utilize the loss function described
in [35]. (iii) For text summarization tasks, we incorporate
the strategies from [38].
Task balancing strategy. We follow [13] for task bal-
ancing, and introduce noise parameter for each task and
loss. We also experimented with several other task balanc-
ing mechanisms such as Equal Weighting, Nash-MTL [32],
Random Loss Weighting [28], and observed similar perfor-
mances across tasks and datasets.

2. More ablations

We conduct experiments to demonstrate the impact of task
balancing leading to our method enabling random selection
of modalities, instead of careful selecting them for pretrain-
ing. We report the results using fine-tuning and pretraining
the full multimodal multi task pretraining strategy. The re-
sults are shown in Table 1.

Method Modality/Task Selection Task Balancing iN2018 K400 ESC50

Ours-1 Pairs No 81.8 84.1 87.4
Ours-2 Random No 78.2 74.6 82.3
Ours-3 Pairs Yes 90.9 89.5 95.8
Ours-4 Random Yes 94.6 93.6 99.1

Table 1. Ablation on modality selection and task balancing

Impact of random vs paired modality and task selection.
We compare against the paired task and modality selection
strategy of OmniVec, while keeping the architecture as our
method (row 1) i.e. pairs of modalities and tasks are care-
fully chosen vs. when the modalities and tasks are chosen
randomly (row 2). We observe that with random selection
results in a relatively inferior performance on all the three
datasets which belong to different modalities (image, video,
audio).

Impact of task balancing. We can observe from that if
task balancing is enabled, then the performance of random
selection of modalities and task (row 4) is better than if we
select the pairs carefully (row 3). This could potentially be
due to careful selection introducing bias, whereas, random
selection allows exploring multiple combinations of modal-
ities and task, where task balancing enables leveraging the
varying complexity of modalities and tasks.

Performance of pretrained model against similar meth-
ods. We report results using the multitask multimodal train-
ing in Table: 3. To adapt to the tasks, we follow the settings
in earlier works [20, 38]. We observe that our method, with
only pretraining, performs better than the competing meth-
ods having capability to process multiple modalities, on all
the compared datasets.

Impact of feature fusion strategy. We evaluate the pro-
posed method on three additional feature fusion strategies,
(i) addition (ii) average pooling (iii) max pooling. The re-
sults are shown in Tab. 2. We observe that our cross atten-
tion based method significantly outperforms other feature
fusion strategies on the evaluated datasets.
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Dataset Metric CA Add. Avg. Pool Max Pool

iNaturalist-2018 Top-1 Acc. 69.9 56.2 58.5 60.4
YouCook2 Recall@10 94.6 80.2 83.2 86.8

Table 2. Comparison of various feature fusion strategies, cross-
attention (CA), addition (Add.), Average Pooling (Avg. Pool),
Max pooling (Max Pool).

3. More experimental results
Finetuning on pretraining datasets. We report result by
fine tuning the complete model on respective training sets
with corresponding tasks, and report result in Table 4. We
observe that the proposed method outperforms the state of
the art method on these datasets.
Adaptation on unseen datasets. We report detailed re-
sults and comparison to state of the art methods on UCF-
101, HMDB51, Oxford-IIIT Pets, ScanObjectNN, NYUv2,
SamSum datasets in Tables 4-9. The proposed method out-
performs the competing methods on all of these datasets.
Adaptation on unseen modalities. We include detailed re-
sults on Tabular data in Table 11, time-series data in Table
12, and X-Ray recognition in Table 14. We observe that we
achieve state of the art results on X-Ray image recognition
and time series data. On Tanular data we outperform com-
peting methods on Adult dataset, while achieve second best
performance on Bank Marketing dataset.
Adaptation on additional datasets. We also report results
on ADE-20K (Table 15), and MS-COCO dataset (Table 16),
using the settings explained in ’Section 4-Adaptation on un-
seen datasets’ (main manuscript). We observe that we lag
behind only by a margin of ∼ 10% on these, despite us-
ing only 10% of the training dataset. Further, both of these
datasets, contain images which are considered difficult and
contain closer to noise in the real world data, hence demon-
strating that our method not only provides good generaliza-
tion but also adapts relatively better than competing method
with significantly lesser in-domain training data.
Cross-modal generalization on additional datasets. In
Table 13, we observe that the proposed method outperforms
the state of the art methods on respective datasets i.e. 1.2%
on VGGSound and 0.9% on AVSBench.
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modalities supported by respective methods. Our method supports any modality (modality agnostic) if a suitable tokenizer is present.
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method as discussed in Sec. 4.5 (main manuscript)
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Method U101
VATT [1] 87.6
Omnivore [20] 98.2
Text4Vis [45] 98.2
SMART [22] 98.6
VideoMAE V2-g [40] 99.6
OmniVec [38] 99.6
Ours 99.7

Table 5. UCF-101 Action Recogni-
tion. Metric is 3-fold accuracy.

Method HMDB51
VATT [1] 66.4
DEEP-HAL [39] 87.56
VideoMAE V2-g [40] 88.10
OmniVec [38] 91.6
Ours 92.1

Table 6. HMDB51 Action Recognition.
Metric is 3-split accuracy.

Method Pets
(top-1)

Pets
(top-5)

Omnivore [20] 95.1 99.1
IELT [46] 95.28 -
DINOv2[33] 96.70 -
EffNet-L2 [18] 97.10 -
OmniVec [38] 99.2 99.7
Ours 99.3 99.7

Table 7. Fine grained image classification
on Oxford-IIIT Pets dataset. The metrics
are top-1 and top-5 accuracy.

Method SO-NN
PointConT [31] 90.3
ReCon [34] 91.3
ULIP-2 [47] 91.5
PointGPT[8] 93.4
OmniVec [38] 96.10
Ours 96.9

Table 8. ScanObjectNN 3D point
cloud classification. Metric is
Overall Accuracy.

Method NYUv2
Omnivore [20] 56.8
CMN [29] 56.9
OmniVec [38] 60.8
Ours 62.5

Table 9. NYU v2 semantic segmentation.
Metric is mean IoU.

Method R-1 R-2 R-L
Pegasus [50] 54.37 29.88 45.89
MoCa [49] 55.13 30.57 50.88
OmniVec [38] 58.81 31.1 53.4
Ours 59.3 32.7 54.8

Table 10. SamSum dataset meeting summa-
rization. Metric is ROGUE scores.

Adult Bank Marketing
Method Accuracy Accuracy

LightGBM 87.8 -
Tabmlp 87.2 -
Tabnet 87.0 -

Tabtransformer 87.1 93.4
Meta-Transformer-B16F [16] 85.9 90.1

Ours 88.1 92.3

Table 11. Tabular data understanding. We report Accuracy (%).

Exchange ETTh1 Traffic Weather
Method

Pyraformer [30] 0.827 0.878 0.946 1.913
Informer [51] 1.040 0.764 0.634 1.550
LogTrans [27] 1.072 0.705 0.696 1.402

Meta-Transformer [52] 0.994 0.694 0.797 1.430
Reformer [26] 1.029 0.741 0.803 1.280

Ours 0.399 0.601 0.210 0.330

Table 12. Time Series data. We report MSE.

Dataset Task Metric SoTA Ours

VGGSound [12] Audio-Visual Classification Top-1 Acc. 66.2 [15] 68.4
AVSBench(S4) [14] Audio Visual Segmentation mIoU 81.74 [2] 82.62

Table 13. Cross-modal generalization on more modalities and
tasks.
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Method Accuracy
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Table 14. X-ray image recognition. We conduct experiments on
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Method mIoU
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Method mIoU
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