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A. ScoreHMR Pseudo-code
In Section 4.1 of the main paper, we introduce Score-

Guided Human Mesh Recovery (ScoreHMR). Here, we
provide a pseudo-code implementation of ScoreHMR in Al-
gorithm 1.

B. Implementation Details
In Section 4.2 of the main paper, we provide information

about the design, architecture and training of the denoising
model ϵϕ. Here, we describe them in more detail. We also
provide the hyper-parameters used for guidance. Our code
and pre-trained model weights are released at https://
github.com/statho/ScoreHMR.
Denoising model architecture. The architecture of the de-
noising model ϵϕ is depicted in Figure 5. For each train-
able layer we include the number of input and output fea-
tures as din → dout. We use image features c from frozen
HMR regression networks as discussed in the main paper.
ProHMR [13] uses the standard ResNet-50 [7] backbone,
and we use the features after the global average pooling
layer, i.e. the dimension of c is 2048. PARE [12] learns
disentangled features for the pose and shape SMPL param-
eters. We only used the pose features of PARE, so c is a
3072-dimensional vector.
Training details. The total number of timesteps in the
diffusion model is set to T = 1, 000 following prior
work [5, 8]. We use cosine variance schedule [18]. We
train with a batch size of 128, learning rate 10−4 and Adam
optimizer [11] for 1M iterations. We maintain an exponen-
tial moving average (EMA) copy of our model with rate of
0.995. Our implementation is in PyTorch [19]. Training
takes only 6 hours on a single NVIDIA A100 GPU.
Guidance details. The gradient step size in Eq. (8) is set to
ρrepr = 0.003, ρMV = 0.005 and ρtemp = 30 for Lrepr,
LMV and Ltemp respectively. The outer refinement loop
is set to Smax = 10. The threshold for the early stopping
criterion is set to λthr = 10−5. The timestep (noise level)
where there refinement process starts is set to τ = 50 and
the DDIM step size is set to ∆t = 2. For multi-view refine-
ment experiments we set τ = 100 and ∆t = 10.

C. Ablations
Here, we provide an ablation study of the two core compo-
nents of score guidance. The ablation study is performed on
the 3DPW test set in the model fitting setting, starting from
the regression estimate of HMR 2.0b with 54.3 PA-MPJPE.
The default setting is marked with gray . All other compo-
nents are set to their default values during each component’s
individual ablation.
Noise level τ . The Table below shows the PA-MPJPE error
varying τ . ScoreHMR works better for small noise levels t.
The one-step denoised result x̂0(xt) used to compute the
guidance loss Eq. (10) is more accurate for small values of
t ∈ [0, τ ].

τ 50 100 200 300
HMR 2.0b + ScoreHMR 51.1 52.3 54.3 54.5

DDIM step size ∆t. The Table below shows the PA-MPJPE
error varying the DDIM step size ∆t. Even though larger
DDIM step sizes result in lower PA-MPJPE in 3DPW, we
find that ScoreHMR with a small step size is more robust
and performs better qualitatively especially for challenging
and unusual poses. A similar observation is made in [6],
where HMR 2.0b has a higher PA-MPJPE error than HMR
2.0a on 3DPW and Human3.6M, but performs better in
practice.

∆t 2 4 6 8 10 12
HMR 2.0b + ScoreHMR 51.1 49.6 48.8 48.4 48.2 48.4

D. Datasets
In this part we offer some information on the datasets

used for training and evaluation. The datasets used for train-
ing are Human3.6M [9], MPI-INF-3DHP [17], COCO [16]
and MPII [1]. The datasets used for evaluation are
3DPW [20], EMDB [10], Human3.6M [9] and Mannequin
Challenge [15].
Human3.6M. It contains data for 3D human pose captured
in a studio environment. Following standard practices we
use subjects S1, S5, S6, S7 and S8 for training, while we
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Algorithm 1 Score-Guided Human Mesh Recovery (ScoreHMR)

Input: Given observation y, denoising model ϵϕ, image features cI , estimate xreg from a regression network, gradient step
size ρ, noise level τ , DDIM step size ∆t, threshold λthres, number of iterations for the outer refinement loop Smax.

1: for s = 1 to Smax do
2: if s = 1 then
3: xinit ← xreg ▷ First iteration starts with estimate from regression
4: else
5: xinit ← x0 ▷ Iteration starts with x0 from previous iteration
6: end if
7: xτ = DDIMInvert(xinit, cI) ▷ Run DDIM inversion until noise level τ
8: for t = τ to ∆t with step size ∆t do
9: ϵ̃← ϵϕ(xt, t, cI) ▷ Predict noise

10: Initialize computational graph for xt

11: x̂0 ← 1√
αt
(xt −

√
1− αt)ϵ̃ ▷ Predict one-step denoised result

12: Lg ← ||y −A(x̂0)||2 ▷ Compute guidance loss
13: if Lg < λthres then
14: return x̂0 ▷ Early stopping: return x0 if the loss is below a threshold
15: end if
16: ϵ̃

′ ← ϵ̃+ ρ
√
1− αt∇xtLg ▷ Compute modified noise after score-guidance

17: x̂
′

0 ← 1√
αt
(xt −

√
1− αt)ϵ̃

′
▷ Predict one-step denoised result with modified noise

18: xt−∆t ←
√
αt−∆tx̂

′

0 +
√
1− αt−∆tϵ̃

′
▷ DDIM sampling step

19: end for
20: end for
21: return x̂

′
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Figure 5. Diffusion model architecture. Implementation of ϵϕ(xt, t, c = g(I)). LN denotes Layer Normalization [3], ∥ denotes
concatenation, and d denotes the dimension of the image features c. Rotations are parameterized with 6D representations, thus x0,xt, ϵ̃
are 144-D vectors.

use subjects S9 and S11 for evaluation in the multi-view
refinement setting.
MPI-INF-3DHP. It contains data for 3D human pose cap-
tured mainly in indoor studio environments with a marker-
less setup. We use the predefined train split for training.
COCO. It contains images in-the-wild annotated with 2D
keypoints. We use this dataset only during training.
MPII. It contains images annotated with 2D keypoints. We
use this dataset only during training.
3DPW. It is a dataset captured in indoor and outdoor loca-

tions and contains SMPL pose and shape ground-truth. We
follow standard practices in the literature and only use the
predefined test split for evaluation.
EMDB. It is a new dataset captured in indoor and outdoor
locations and contains SMPL pose and shape ground-truth.
It includes a split (i.e., EMDB 1) with the most challenging
outdoor sequences. We use EMDB 1 for evaluation.
Mannequin Challenge. It contains videos of people stay-
ing frozen in various poses. We use the SMPL annotations
from [14] for evaluation in this dataset.



Figure 6. Model fitting results. We compare our approach (green) with ProHMR-fitting (blue) and SMPLify (grey). All model fitting
algorithms are initialized with regression from ProHMR (pink) or HMR 2.0b (white).

3DPW (14) EMDB 1 (24)

HMR 2.0b [6] 54.3 78.7
+ ScoreHMR w/o β 51.1 76.6
+ ScoreHMR w/ β 51.1 76.5

Table 5. ScoreHMR with and without the inclusion of SMPL
shape parameters β. Numbers are PA-MPJPE in mm. Parenthesis
denotes the number of body joints used to compute PA-MPJPE.

E. Evaluation Metrics

Depending on the setting, we evaluate using the MPJPE,
PA-MPJPE and Acc Err metrics following standard prac-
tices in the literature. The Mean Per Joint Position Error
(MPJPE) computes the Euclidean error between the pre-
dicted and ground-truth 3D joints, after aligning them at
the pelvis. The PA-MPJPE compute the same error after
aligning the predicting the ground-truth 3D joints with Pro-
crustes alignment. Both metrics are used for per-frame 3D
human pose evaluation. The acceleration error (Acc Err)
is a temporal metric that measures the average difference
between ground truth 3D acceleration and predicted 3D ac-
celeration of joints in mm/s2.

F. Additional Quantitative Evaluation

Diffusion Model for SMPL β. As we discuss in Sec-
tion 4.2 of the main paper, ScoreHMR can also accommo-
date the SMPL shape parameters β. In Table 5 we present
results in single-frame model fitting to 2D keypoint detec-
tions, comparing ScoreHMR with and without the inclu-
sion of SMPL β. We observe that modeling and optimiz-
ing β with our proposed approach works well, but does not
bring any significant performance improvement compared
to modeling only the SMPL pose parameters θ.

Refinement from HMR 2.0a. The Table below shows the
PA-MPJPE of model fitting on 3DPW test set, starting from
HMR 2.0a regression. Only ScoreHMR can quantitatively
improve the performance of HMR 2.0a (by 4.5%).

HMR 2.0a +ScoreHMR +ProHMR-fitting +SMPLify
44.5 42.5 54.9 52.5

G. Additional Qualitative Results

In Figure 6 we include additional qualitative exam-
ples of model fitting, comparing our proposed approach
with ProHMR-fitting [13] and SMPLify [4]. Our approach



achieves more faithful reconstructions than the baselines.
We observe that in the case of missing keypoint detections
(e.g., example with truncation in last row) SMPLify results
in body orientation errors.

In Figure 8 we illustrate the effectiveness of our ap-
proach in consolidating information from multiple views in
order to improve the 3D pose of a human. The initial view
(first row of Figure 8) presents challenges with occluded
hands, resulting in inaccurate pose estimate for the hands.
Multiple view fusion with our proposed approach results in
a more faithful estimation of the true pose.

We present some failure cases of our method in Figure 7.
Our approach can fail when there are wrong keypoint detec-
tions. Optimization-based methods fail in that case too as
we show in Figure 7.

Finally, we demonstrate our approach on video se-
quences from the validation split of PoseTrack [2] and oth-
ers. We use predicted tracks from 4DHumans [6]. We en-
courage viewing video results on the project page.
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Figure 7. Failure cases of model fitting. Pink: ProHMR regression. White: HMR 2.0b regression. Green: Regression + ScoreHMR (ours).
Blue: Regression + ProHMR-fitting. Grey: Regression + SMPLify. While all methods encounter challenges when incorrect keypoints are
detected, our image-conditioned diffusion model tries to keep the 3D pose aligned with the available image evidence.

Camera View Alternative View Alternative View

Regression Regression After refinementInput Image

Figure 8. Multi-view refinement. Refinement with multiple views fixes the 3D pose of the right hand, which is self-occluded in the first
view (first row).
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