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1. Overview
In this document, we provide additional method details,
dataset details, implementation details, experimental analy-
sis, and qualitative results. In Sec. 2, we concretely outline
how we convert a point cloud into a curve cloud, analyze
our 1D farthest point sampling, and discuss our modifica-
tions to point-based operations. In Sec. 3, we provide a
detailed overview of the Kortx software system and dataset,
our ShapeNet simulator, and the A2D2 dataset. In Sec. 4,
we discuss implementation details of CurveCloudNet and
baselines that are not covered in the main paper. In Sec. 5,
we report results on a translated A2D2 experiment, object
classification, and the nuScenes test split. Finally, in Sec. 6,
we conclude with additional limitations.

2. Additional Method Details
2.1. Constructing Curve Clouds

Curve Cloud Conversion.
Constructing Curve Cloud. We refer the reader to Sec.
3.1 of the main paper for an overview of constructing curve
clouds. As input, we assume that a laser-based 3D sen-
sor outputs a point cloud P = {p1, ..., pN} where pi =
[xi, yi, zi] ∈ R3, an acquisition timestamp ti ∈ R for each
point, and an integer laser-beam ID bi ∈ [1, B] for each
point. We wish to convert the input into a curve cloud
C = {c1, ..., cM}, where a curve c = [pi, ..., pi+K ] is de-
fined as a sequence of K points where consecutive point
pairs are connected by a line segment, i.e., a polyline. As
outlined in Fig. 1, we first group points by their laser beam
ID and sort points based on their acquisition timesteps, re-
sulting in an ordered sequence of points that reflects a sin-
gle beam’s traversal through the scene. Next, for each se-
quence, we compute the distances between pairs of consec-
utive points (denoted as polyline “edge lengths”). Finally,

we split the sequence whenever an edge length is greater
than a threshold δ, resulting in many variable-length poly-
line “curves”. In practice, we parallelize the conversion
across all points, and on the large-scale nuScenes dataset,
the algorithm runs at 1500Hz.

We select a threshold δ that reflects the sensor specifica-
tions and scanning environment. In particular, the thresh-
old is conservatively set to approximately 10× the median
distance between consecutively scanned points one meter
away from the sensor. On the A2D2 dataset [11], we set
δ = [0.1, 0.17, 0.1, 0.12, 0.1] for the five LiDARs, and on

’ ’ ’
I n p u t s : P , T , B , d e l t a

P : a r r a y o f s i z e (N , 3 ) w i t h x y z c o o r d i n a t e s
T : a r r a y o f s i z e (N , ) w i t h t i m e s t e p s
B : a r r a y o f s i z e (N , ) w i t h beam IDs

O u t p u t s : c u r v e s
c u r v e s : l i s t o f a r rays , a r r a y j i s s i z e ( N j , 3 )

’ ’ ’
c u r v e s = [ ]
f o r b in un iq ue (B ) :

# f i l t e r t o a s i n g l e l a s e r beam ’ s measurments
beam P , beam T = P [ beams==b ] , T [ beams==b ]

# o r d e r p o i n t s by l a s e r ’ s t r a v e r s a l
s e q u e n t i a l o r d e r i n g = a r g s o r t ( beam T )
beam P = beam P [ s e q u e n t i a l o r d e r i n g ]

# s p l i t l a s e r ’ s t r a v e r s a l i n t o c o n t . c u r v e s
e d g e l e n s = norm ( beam P [ 1 : ] − beam P [ : − 1 ] )
s p l i t l o c a t i o n s = e d g e l e n s > d e l t a

# c o n v e r t i n t o p o l y l i n e s
beam C = s p l i t s e q ( beam P , s p l i t l o c a t i o n s )
c u r v e s += beam C

Figure 1. Point to Curve Cloud Conversion. Algorithm (in Python)
to convert an input point cloud into a set of polylines.
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the nuScenes dataset [5] and KITTI dataset [2, 10] we set
δ = 0.08. Additionally, on the A2D2, nuScenes, and
KITTI datasets, we scale δ proportional to the square root of
the distance from the sensor, since point samples becomes
sparser at greater distance. On the object-level ShapeNet
dataset [6], we set δ = 0.01. Experimentally, we observed
that CurveCloudNet is flexible across different δ values.

Kortx Curve Representation. The Kortx vision system di-
rectly generates and operates on 3D curves sampled from a
triangulated system of event-based sensors and laser scan-
ners. As the detected laser reflection traverses the scene, it
produces a frameless 4D data stream that enables low la-
tency, low processing requirements, and high angular reso-
lution. 3D curves are an intrinsic component of the Kortx
perception system, and the system directly outputs a curve
cloud without the need for additional data processing.

2.2. Additional Details on Curve Operations

1D Farthest Point Sampling. We refer the reader to Sec.
3.2.2 of the main paper for an overview of our 1D farthest
point sampling (FPS) algorithm. The goal of this algorithm
is to efficiently sample a subset of points on each curve such
that consecutive points will be approximately ϵ apart along
the downsampled curve. Concretely, for a curve c with
K points, c = [pi, ..., pi+K ], we first compute the K−1
“edge lengths”, e = [di, ..., di+K−1], where di is the dis-
tance between consecutive points (pi, pi+1). Next, we es-
timate the geodesic distance along the curve via a cumula-
tive sum operation on the edge lengths: g = CUMSUM(e).
Then, we divide the geodesic distances by our desired spac-
ing, ϵ, and take the floor, resulting in ϵ-spaced intervals
I = FLOOR(g/ϵ). We output the first point in each interval,
resulting in L ϵ-spaced subsampled points {q1, ..., qL}.

For each curve, the computational complexity of the 1D
FPS algorithm is O(K). Extending this to all curves, the
computational complexity is O(N). When parallelized on
a GPU, for each curve, the 1D FPS algorithm has a has par-
allel complexity of O(logK), where the CUMSUM operation
is the parallelization bottleneck (see prefix sum algorithms
for more information [4]). The algorithm trivially paral-
lelizes across curves, leading to a total parallel complexity
of O(logK). In contrast, Euclidean farthest point sampling
has a comptational complexity of O(N2) or O(Nlog2N)
(depending on whether a KD-tree is used), and a parallel
complexity of O(L). When L is large (i.e. we are subsam-
pling a large number of points), Euclidean FPS is a signifi-
cant performance bottleneck.

2.3. Additional Details on Point Operations

Set Abstraction (SA). CurveCloudNet uses a series of set
abstraction layers from PointNet++ [17], and we follow pre-
vious works to improve the set abstraction layer. First, we

Figure 2. Kortx Dataset Objects. Our Kortx dataset contains scans
of 7 real-world objects. We visualize one aggregated “scan” per
object from a single viewpoint.

perform relative position normalization [18] – given a cen-
troid point pi with local neighborhood points Ni, we center
the neighborhood about pi and we divide by r to normalize
the relative positions. Additionally, we opt for the attentive
pooling from RandLANet [12] instead of max pooling.

Graph Convolution. CurveCloudNet uses a series of graph
convolutions, which are modeled after the edge convolu-
tion from DGCNN [20]. Unlike DGCNN however, we con-
struct the K-Nearest-Neighbor graph based on 3D point dis-
tances instead of feature distances – this permits more ef-
ficient neighborhood construction, irrespective of feature
size. Furthermore, we use attentive pooling from Rand-
LANet [12] instead of max pooling.

3. Additional Dataset Details

3.1. Kortx Perception System and Dataset

Kortx Perception System. Kortx is a perception software
system developed by Summer Robotics [1]. It is an active-
light, multi-view stereoscopic system using one or more
scanning lasers. It can be configured to use two or more
event-based vision sensors to build up arbitrary capture vol-
umes. Event-based vision sensors are used to detect the
scanning laser reflection from target surfaces. Event-based
sensors are well suited to this setup as their readout elec-
tronics are event triggered instead of time triggered. Fur-
thermore, the Kortx System supports arbitrary continuous
scan patterns, allowing a user to create their own patterns
and use their own scan hardware. For more information,
please visit the Summer Robotics Website.

Kortx Dataset. Using Kortx, we scanned 7 real-world ob-
jects: cap, chair, earphone, knife, mug-1, mug-2 and rocket
(see Fig. 2). Each object was scanned multiple times in
different poses, resulting in 39 total scans (summarized in
Tab. 1). Because the Kortx platform provides a continuous

https://www.summerrobotics.ai/


Object Total Cap Chair Earphone Knife Mug Rocket

Instances 7 1 1 1 1 2 1
Scans 39 6 6 4 6 12 5
Frames 195 30 30 20 30 60 25

Table 1. Kortx Dataset Statistics. “Instance” is a unique 3D object.
“Scan” is a dense object scan from a single viewpoint. “Frame” is
a single frame within the 20Hz stream of the dense scan.

event-based 3D scan output (points are sampled every 5µs),
we defined a “frame” as a batch of 2048 consecutive point
measurements, corresponding to roughly a 20Hz frame rate.
Because each frame differs in its dynamic scanning pattern,
we evaluate on 5 consecutive frames per scan in our Ko-
rtx dataset, hence resulting in 195 point clouds in total. We
manually labeled scanned points with the semantic part cat-
egories defined in the ShapeNet Part Segmentation Bench-
mark [6]. Each Kortx scan is mean-centered, however it is
not aligned into a canonical pose, resulting in an object’s
orientation depending on the sensor’s reference frame.

3.2. ShapeNet Simulator

We simulate laser-based 3D capture on the ShapeNet
Dataset [6]. For each mesh, we randomly sample a sensor
pose on the unit sphere and render the mesh’s depth values
into a 2048× 2048 image. Next, we sample 2D lines on the
depth image that correspond to a laser’s traversal. For the
random sampling pattern used in the Kortx evaluation (see
Sec 4.1 of the main paper) and the ShapeNet Classification
evaluation (see Sec. 5.2), we select random linear traver-
sals in the image plane, with each traversal parameterized
by a pixel coordinate (i, j) and direction θ ∈ [0, π). For the
grid and parallel sampling patterns used in our ShapeNet
Segmentation evaluation (see Sec 4.1 of the main paper),
we sample evenly-spaced vertical and horizontal lines. To
reduce descritization artifacts introduced from the rasteriza-
tion, we query every 6th pixel along each line for the Kortx
segmentation task and every 4th pixel for the ShapeNet seg-
mentation and classification tasks. We repeatedly generate
synthetic laser traversals until we have sampled 2048 points

Figure 3. ShapeNet Simulator. Our ShapeNet laser-based 3D cap-
ture simulator can produce different types of sampling patterns.

from the mesh. Fig. 1 of the main paper shows an example
of the random, grid, and parallel sampling patterns used in
our ShapeNet Segmentation evaluation. Fig. 3 provides an
additional qualitative illustration of the three sampling pat-
terns, but showing 4096 points per scan for greater visual
clarity.

3.3. A2D2 LiDAR Segmentation

The Audi Autonomous Driving Dataset (A2D2) [11] con-
tains 41,280 frames of labeled outdoor driving scenes cap-
tured in three cities. The vehicle is equipped with five Li-
DAR sensors, each mounted on a different part of the ve-
hicle and with a different orientation, resulting in a unique
grid-like scanning pattern. The A2D2 data was captured in
urban, highway, and rural environments as well as in differ-
ent weather conditions. At the time of writing, the A2D2
dataset only contains semantic labels for the front-facing
camera. Thus, we evaluate on LiDAR observations within
the front-facing camera’s field of view, and we map camera
categories to LiDAR categories. We will release the code
detailing the exact mapping.

3.4. Discussion on 3D Datasets

As LiDAR and other 3D scanning technologies continue
to develop, they are being applied to new and diverse ap-
plications, including open-world robotics (i.e. embedded
agents), city planning, agriculture, mining, and more. Ad-
ditionally, there is an increasing variety of sensors and sen-
sor configurations, spanning hardware that scans at different
point densities, different ranges, and with unique (or con-
trollable) scanning patterns. The A2D2 and Kortx datasets
are two recent examples of such a trend. We believe an im-
portant future direction will be to develop a 3D backbone
that is performant in all these settings. Furthermore, we
believe it is important to understand which settings “break”
previous assumptions such as the range-view projection, the
birds-eye-view projection, and spherical attention. While
CurveCloudNet is a first step towards this goal, we believe
it will be important to capture and compile new 3D datasets,
and to evaluate on a greater diversity of environments.

4. Additional Implementation Details

4.1. Baselines

PointNet++ and DGCNN. We train and evaluate Point-
Net++ [17] and DGCNN [21] using the reproduced imple-
menations from Pytorch Geometric [9]1. For PointNet++,
we run hyperparameter sweeps to tune the radius and down-
sampling ratio on each dataset. For DGCNN, we use the
authors’ reported hyperparameters.

1https://github.com/pyg-team/pytorch geometric/

https://github.com/pyg-team/pytorch_geometric/tree/master/examples


RandLANet. We train and evaluate RandLANet [12] using
the reproduced implementation from Open3D-ML [26]2.
We additionally improve the latency by incorporating GPU-
implementations for point grouping and sampling from Py-
Torch3D [19]3. We use the authors’ reported hyperparame-
ters.
CurveNet. We train and evaluate CurveNet [22] using the
authors’ official implementation4. We use the authors’ re-
ported hyperparameters for all datasets.
PointMLP. We train and evaluate PointMLP [16] using the
authors’ official implementation5. We use the reported hy-
perparameters for all datasets.
PointNext. We train and evaluate PointNext [18] using the
authors’ official implementation6. As outlined by the au-
thors, we use PointNext-Small for the ShapeNet and KortX
datasets. On the A2D2, nuScenes, and KITTI datasets, we
use the larger PointNext-XL. Because the authors indicate
the importance of the network “radius”, we additionally per-
formed a hyperparameter sweep to find the best radius of
0.05 for the A2D2, nuScenes, and KITTI datasets.
MinkowskiNet. We train and evaluate MinkowskiNet [8]
using the authors’ official implementation7. We use the
larger MinkUNet-34A for all experiments. We use an initial
voxel size of 0.05 on outdoor datasets and 0.015 on object-
level datasets.
Cylinder3D. We train and evaluate Cylinder3D [25] using
the authors’ official implementation8. We use the reported
hyperparameters on the nuScenes and KITTI datasets. On
the A2D2 dataset, we set the cylindrical voxel grid to cover
a ±31◦ forward-facing azimuth with a maximum radius of
80 meters and a height covering [−5, 20] meters; we define
the initial grid to have 360 radial partitions, 120 angular par-
titions, and 120 height partitions. On the ShapeNet and Ko-
rtX datasets, we set the voxel grid to cover all 360◦ with a
radius of 1.0 and height of 1.0; to address latency and mem-
ory constraints, we define the initial grid to have 96 radial
partitions, 96 angular partitions, and 96 height partitions.
SphereFormer. We train and evaluate SphereFormer [14]
using the authors’ official implementation9. We use the
reported hyperparameters for the nuScenes and KITTI
datasets, and we use the reported nuScenes hyperparameters
for the A2D2 dataset. For the KortX and ShapeNet datasets,
we also use the reported hyperparameters, and we reduce
the voxel size from 0.1 to 0.015 to account for the dataset’s
smaller 3D scale. On the KortX and ShapeNet datasets, we

2https://github.com/isl-org/Open3D-ML
3https://github.com/facebookresearch/pytorch3d
4https://github.com/tiangexiang/CurveNet
5https://github.com/ma-xu/pointMLP-pytorch
6https://github.com/guochengqian/PointNeXt
7https://github.com/NVIDIA/MinkowskiEngine
8https://github.com/xinge008/Cylinder3D
9https://github.com/dvlab-research/SphereFormer

additionally ran a sweep on different voxel sizes and spher-
ical window sizes, but observed limited differences.

4.2. Training Strategy

We train CurveCloudNet and baselines on segmentation
tasks with a standard cross-entropy loss. Following previ-
ous works, we also supplement the loss with a Lovasz loss
[3, 25] for the nuScenes, A2D2, and KITTI datasets. At
training, we apply random scaling and translation augmen-
tations, as well as random flips on the nuScenes, A2D2, and
KITTI datasets. Importantly, we use an identical training
strategy for CurveCloudNet and each baseline. We experi-
mentally observe convergence in all models’ validation ac-
curacies by the end of training.

Object Part Segmentation. We train CurveCloudNet and
all baselines for 60 epochs in the KortX experiment and 120
epochs in the ShapeNet experiment with the Adam opti-
mizer [13], a learning rate of 1e−4, batch momentum decay
of 0.97, and exponential learning rate decay of 0.97. For
all models, except for Cylinder3D, we use a batch size of
24. For Cylinder3D, we use a batch size of 12 because 24
exceeds our GPU memory capacity.

A2D2 LiDAR Segmentation. We train CurveCloudNet
and all baselines for 140 epochs with the Adam optimizer, a
batch size of 7, a learning rate of 1e−3, and an exponential
learning rate decay of 0.97.

nuScenes and KITTI LiDAR Segmentation. We train
CurveCloudNet and all baselines for 100 epochs with the
Adam optimizer, a batch size of 4 on nuScenes and 2 on
KITTI, a learning rate of 1e−3, and an exponential learning
rate decay of 0.97. At test time, we follow previous works
[15, 25] and average model predictions over axis-flipping
and scaling augmentations.

5. Additional Experiments
5.1. Translated A2D2

Overview. In Sec. 4.2 of the main paper, we reported
that SphereFormer outperforms CurveCloudNet by +1.0%
mIOU on the A2D2 dataset. In this section, we show
that, on the same data, SphereFormer underperforms Curve-
CloudNet when the scene does not exhibit consistent and
aligned global structure.

We apply a simple translation augmentation to the A2D2
training and validation data – for each scan, we offset all
points by a translation sampled from a uniform Gaussian
with µ = 0 and σ = 20. Note that this removes the global
alignment of point clouds, but completely preserves all lo-
cal structure. In the real world, this setup could occur in
topography or mapping, i.e. when a large region is scanned
but only one area is of interest (which could be anywhere in
the scan). We train and evaluate all models with an identical

https://github.com/isl-org/Open3D-ML
https://github.com/facebookresearch/pytorch3d
https://github.com/tiangexiang/CurveNet
https://github.com/ma-xu/pointMLP-pytorch
https://github.com/guochengqian/PointNeXt
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/xinge008/Cylinder3D
https://github.com/dvlab-research/SphereFormer
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MinkowskiNet [8] 42.7 54.7 3.1 60.0 7.4 87.3 54.8 9.7 71.8 76.7 14.3 31.5 42.4
SphereFormer [14] 40.5 52.7 1.1 62.4 3.8 85.9 53.5 10.9 70.5 76.3 9.6 29.1 29.9
CurveCloudNet 44.8 58.4 2.2 59.8 6.7 89.9 58.5 11.1 77.8 83.3 13.1 35.6 42.2

Table 2. Translated A2D2 Results. When A2D2 scans are randomly translated, CurveCloudNet significantly outperforms SphereFormer,
suggesting that SphereFormer relies on a dataset exhibiting a highly consistent global structure.

setup to the original A2D2 experiment.

Results. We summarize results on the translated A2D2 ex-
periment in Tab. 2. Without a consistent global alignment
of the scene layout, all methods perform worse. However,
CurveCloudNet is less effected and outperforms Sphere-
Former by over 4%. This further suggests that Sphere-
Former’s radial window is tailored for outdoor driving
scenes and cannot be flexibly applied to environments with
weaker global structure. In contrast, CurveCloudNet can
successfully leverage local structures to reason in more di-
verse environments.

5.2. ShapeNet Classification

In addition to semantic segmentation tasks, we also evaluate
CurveCloudNet’s performance in shape classification.

ShapeNet Classification Dataset. We use the ShapeNet
Part Segmentation Benchmark [6, 23] as described in Sec
4.1 of the main paper. In the classification setting, the net-
work is tasked with classifying a point cloud into one of
the 16 object categories. Using our ShapeNet laser-scanner
simulator (see Sec. 3.2), we generate a single synthetic
“scan” for each ShapeNet mesh from a fixed sensor view-
point, resulting in scanned objects sharing a canonical ori-
entation. Following the official training and validation splits
[23], this yields 12139 training point clouds and 1872 val-
idation point clouds. For this experiment, we consider the
random curve sampling pattern (see Sec. 3.2).

Setup. We train CurveCloudNet and several baselines on
the simulated ShapeNet training set. Similar to the settings
used for the segmentation task, all models are trained for
120 epochs with the Adam optimizer, a batch size of 24, a
learning rate of 3e−4, batch momentum decay of 0.97, and
exponential learning rate decay of 0.97. We record the best
validation class-averaged accuracy, instance-averaged accu-
racy, and class-averaged F1 score that is achieved during
training. We report means and standard deviations across 3
runs.

Results. Results are summarized in Tab. 3. CurveCloudNet
outperforms the baselines on all three metrics. Additionally,
CurveCloudNet exhibits improved latency and lower GPU
memory compared to PointNet++, DGCNN, and PointMLP.

5.3. Additional nuScenes Results

We provide qualitative results on the nuScenes validation
split in Fig. 4. For the corresponding evaluation on the val-
idation split, see Sec. 4.3 of the main paper.

5.3.1 nuScenes Test Split

We evaluate our model on the test split of the nuScenes
LiDAR segmentation task, and compare to top-performing
baselines from the academic literature. We summa-
rize our results in Tab. 4. CurveCloudNet outperforms
many sparse-voxel methods in both class-averaged and
frequency-weighted mIOU, such as Cylinder3D [25], SPV-
NAS [15], and AF2-S3Net [7].

5.4. Additional KortX Results

We provide additional qualitative results on the KortX
dataset in Fig. 5. We observe that CurveCloudNet distin-
guishes finegrained structures, such as the legs and back of
the chair, the handle of the mug, the boundary where the
nose of the rocket begins, and the brim of the cap.

5.5. Additional A2D2 Results

We provide additional qualitative results on the A2D2
dataset in Fig. 6. In many examples, CurveCloudNet distin-
guishes the sidewalk and the road much better than Cylin-
der3D. Furthermore, in contrast to CurveCloudNet, ex-
amples show that Cylinder3D can fail to detect pedestri-
ans, swaps the “truck” and “car” categories, and swaps the
“building” and “sign” categories.



Accuracy Performance
Method Class (↑) Instance (↑) F1 (↑) Time (ms) (↓) GPU (GB) (↓) Param (M)

PointNet++ [17] 95.3 ± 0.7 99.0 ± 0.05 95.5 ± 0.6 51 0.91 1.6
DGCNN [20] 93.7 ± 0.5 98.9 ± 0.03 93.6 ± 0.5 73 0.78 0.6
PointMLP [16] 94.8 ± 1.3 99.2 ± 0.05 95.3 ± 1.0 54 0.76 13.2
CurveCloudNet 96.3 ± 0.4 99.3 ± 0.04 96.0 ± 0.5 37 0.66 10.3

Table 3. Object Classification Results. Mean class-averaged accuracy (Class), instance-averaged accuracy (Instance), and class-averaged
F1 score (F1) are reported for the ShapeNet data. CurveCloudNet outperforms baselines on all metrics. Performance is on an Nvidia RTX
3090 GPU (batch size 16).
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PolarNet [24] Voxel 69.4 87.4 72.2 16.8 77.0 86.5 55.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
Cylinder3D [25] 77.2 89.9 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6
SPVNAS [15] 77.4 89.7 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
AF2-S3Net [7] 78.3 88.5 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
SphereFormer [14] 81.9 91.7 83.3 39.2 94.7 92.5 77.5 84.2 84.4 79.1 88.4 78.3 97.9 69.0 81.5 77.2 93.4 90.2
CurveCloudNet Curve 78.5 90.4 81.7 38.4 93.8 90.3 70.1 77.3 75.1 69.5 84.9 74.1 97.5 67.8 79.7 75.7 91.7 88.7

Table 4. nuScenes Test Split. CurveCloudNet demonstrates improved or competitive performance with top-performing baselines.

6. Additional Discussion
Our intuition suggests that when a point cloud exhibits 1D
curve structures, it is usually advantageous to make use of
the structure. However, as we continue using CurveCloud-
Net in new environments, limitations arise. For instance,
it can be challenging to dynamically identify when curve
structure exists and the extent to which it exists. While the
datasets we evaluated on exhibit clear curve structure, curve
structure can diminish in settings such as far-away scan-
ning, superimposing large volumes of scans, or gradually
acquiring 3D measurements. In such cases, we speculate
that curve modules offer little to no improvement, and that
CurveCloudNet reduces to a point cloud backbone; how-
ever, additional follow-up analysis is needed.
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Figure 5. Kortx Dataset Part Segmentation. We visualize segmentation predictions of CurveCloudNet and PointMLP on the KortX dataset.
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Figure 6. A2D2 Dataset Segmentation. We visualize segmentation predictions of CurveCloudNet and Cylinder3D on the A2D2 dataset.
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