
Adapters Strike Back

Supplementary Material

In this appendix, we provide further details and results,
which could not be included in the main paper due to space
limitations.

A. Why did adapters underperform for ViTs?
First, we want to shed more light on why adapters do not rank
well in the literature for parameter-efficient transfer learning
for vision tasks. By comparison of numbers reported for
adapters on VTAB in the publications referenced in Tab. 4
of the main paper, we found that they essentially stem from
only two sources.

The first source is VPT [30], where results for an adapter
with a reduction factor of 256, amongst other configurations,
are reported. For a ViT-B/16 with a hidden dimension of
d=768, this is equal to an adapter with rank r=3. Despite
citing Pfeiffer et al. [47], who suggest a Post-Adapter po-
sition, the actual implementation in the code base3 equals
an Intermediate-Adapter that performs worse on VTAB (see
Sec. 3.3 of the main paper). The initialization used for the
adapter parameters most resembles a LoRA initialization but
sets the adapter parameters to zero everywhere. Therefore,
there is no randomization in the initialization of the adapter
parameters, and different seeds only affect the initialization
of the classifier. Additionally, the intermediate features in
the adapter bottlenecks then become all zero, leading to iden-
tical gradients in the up-projections at the start of training,
which hinders optimization. As a result, the adapter baseline
used by VPT only reaches 60.0% average accuracy on the
VTAB test sets. This is a gap of 17.6 percentage points (pp)
compared to our Adapter+ with rank r=8 (77.6% average
accuracy). Even when considering the loss of around 2–3 pp
caused by an unsuitable data normalization in the VPT im-
plementation, this is still a very significant gap. The numbers
for an adapter with rank r=3 from VPT are also reported in
[38] as a baseline.

The second source for adapter baseline results is the
NOAH pre-print [63]. There, an adapter with rank r = 8
is used. Its implementation4 performs the following feature
transformation:

x 7→ Adapter
(
FFN(x)

)
+ x . (12)

This is closest to the Intermediate-Adapter (cf . Eq. (10) of
the main paper) but misses the skip connection bypassing the
adapter and containing FFN(x). Thus, the adapter does not
learn a residual function to an identity mapping but instead
must learn a more complex mapping to transform its input.

3https://github.com/KMnP/vpt
4https://github.com/ZhangYuanhan-AI/NOAH

Therefore, the adapter becomes harder to train [23], leading
to an average accuracy of 73.9% on the VTAB test sets or
3.7 pp behind our Adapter+. For the NOAH adapter results,
we see a proliferation to the publications of FacT [31] and
SPT [20]. The adapter implementation from NOAH is also
used in the code released for Consolidator5 [19] but their
results are produced with rank r=16, giving a slightly better
average accuracy of 74.3%, or 3.3 pp less than Adapter+.

In summary, the examined baseline implementations dif-
fer from the configurations proposed by Houlsby et al. [27]
and Pfeiffer et al. [47] and introduce issues that lead to their
underperformance. In our paper, we show that adapters are
capable of reaching 77.6% average accuracy for rank r=8
and 77.9% for our optimized version of Adapter+, uplifting
adapters from an easy-to-beat baseline to a state-of-the-art
transfer method.

B. Dataset properties

In Tabs. 8 and 9, we show the statistics of each task in VTAB
[62] and FGVC [30] with regard to the number of classes
and the number of images in the train, validation, and test
splits. The tables are largely “borrowed” from [30].

Table 8. Dataset details for VTAB.

Group Task # Classes
Splits

Train Val Test

Natural

CIFAR-100 [34] 100

800 200

10 000
Caltech-101 [14] 102 6 084
DTD [8] 47 1 880
Oxford Flowers [44] 102 6 149
Pets [46] 37 3 669
SVHN [43] 10 26 032
Sun397 [59] 397 21 750

Specialized

Patch Camelyon [57] 2

800 200

32 768
EuroSAT [24] 10 5 400
RESISC45 [7] 45 6 300
Diabetic Retinopathy [13] 5 42 670

Structured

CLEVR-Count [32] 8

800 200

15 000
CLEVR-Distance [32] 6 15 000
DMLab [2] 6 22 735
KITTI-Distance [17] 4 711
dSprites-Location [41] 16 73 728
dSprites-Orientation [41] 16 73 728
smallNORB-Azimuth [35] 18 12 150
smallNORB-Elevation [35] 9 12 150

5https://github.com/THU-MIG/Consolidator

https://github.com/KMnP/vpt
https://github.com/ZhangYuanhan-AI/NOAH
https://github.com/THU-MIG/Consolidator

Table 9. Dataset details for FGVC. For datasets marked with *, we
follow [30] to randomly sample train and validation splits because
validation sets are not available from the original datasets.

Dataset # Classes
Splits

Train Val Test

CUB-200-2011* [58] 200 5 394 600 5 794
NABirds* [26] 555 21 536 2 393 6 084
Oxford Flowers [44] 102 1 020 1 020 6 149
Stanford Dogs* [33] 120 10 800 1 200 8 580
Stanford Cars* [16] 196 7 329 815 8 041

C. More experimental settings
For all experiments conducted with our implementation,
we average the results over three seeds. This includes the
(re-)evaluations of LoRA and VPT. We built our implemen-
tation on PyTorch [65], PyTorch Lightning,6 and timm.7 We
run experiments with bfloat16 mixed precision on a NVIDIA
RTX A6000 GPU.

For our experiments in the main paper, we report results
for a fixed adapter rank r as well as ranks optimized per task.
For the per-task optimization of Adapter+, we use a hyper-
parameter sweep over the set of ranks r∈{1, 2, 4, 8, 16, 32}.
We evaluate on the validation sets of VTAB and FGVC and
choose the per-task ranks from the specified range(s) to steer
the number of average parameters. The ranks we used to
produce the results on the VTAB and FGVC test sets (see
Tabs. 4 and 5 in the main paper) are shown in detail in Tab. 10
and Tab. 11, respectively.

D. Calculation of no. of trainable parameters
Suppose we have a ViT with a hidden dimension d, N trans-
former layers, and adapters with rank r. The total num-
ber of learnable parameters for Adapterbase modules (cf .
Eq. (4) of the main paper) attached to the FFN of every
transformer layer then amounts to N(2dr + r + d). Includ-
ing layer normalization in the adapter modules amounts to
N2d additional parameters. The addition of learned, layer-
wise scaling amounts to N extra parameters and choosing
learned, channel-wise scaling instead adds Nd extra parame-
ters. Adapter+ (see Sec. 4.3 of the main paper) thus amounts
to N(2dr + 2d + r) total parameters. Additionally, for a
task with c classes, we add a classifier with dc+ c learnable
parameters.

E. Vision transformer pre-training
As we add only very few parameters to an otherwise frozen
backbone, the generalization capability of the feature repre-
sentations produced by the backbone is important. For ViTs,
there are a number of off-the-shelf models available with

6https://lightning.ai/pytorch-lightning
7https://github.com/huggingface/pytorch-image-models

Table 10. Adapter rank r for each VTAB task for optimized
versions of Adapter+ with different ranges of permitted ranks.

Natural Specialized Structured

#
Pa

ra
m

(M
)

C
IF

A
R

-1
00

[3
4]

C
al

te
ch

-1
01

[1
4]

D
T

D
[8

]
Fl

ow
er

s
[4

4]
Pe

ts
[4

6]
SV

H
N

[4
3]

Su
n3

97
[5

9]

C
am

el
yo

n
[5

7]
E

ur
oS

A
T

[2
4]

R
E

SI
SC

45
[7

]
R

et
in

op
at

hy
[1

3]

C
L

E
V

R
-C

ou
nt

[3
2]

C
L

E
V

R
-D

is
t.

[3
2]

D
M

L
ab

[2
]

K
IT

T
I-

D
is

t.
[1

7]
dS

pr
-L

oc
.[

41
]

dS
pr

-O
ri

.[
41

]
sN

O
R

B
-A

zi
.[

35
]

sN
O

R
B

-E
le

.[
35

]

r∈ [1..4] 0.11 1 4 2 1 4 4 1 4 2 4 2 4 2 4 4 4 4 4 4
r∈ [1..8] 0.16 1 4 2 1 8 8 1 8 2 8 8 4 8 8 8 8 4 8 8
r∈ [1..32] 0.27 1 4 2 1 8 16 1 16 2 32 32 4 8 8 8 32 4 32 8

Table 11. Adapter rank r for each FGVC dataset for optimized
versions of Adapter+ with different ranges of permitted ranks.

#
Pa

ra
m

(M
)

C
U

B
-2

00
[5

8]

N
A

B
ir

ds
[2

6]

O
xf

or
d

Fl
ow

er
s

[4
4]

St
an

fo
rd

D
og

s
[3

3]

St
an

fo
rd

C
ar

s
[1

6]

r∈ [1..32] 0.34 2 2 1 1 32

differences in their training procedures. Here, we examine
three different pre-trainings as examples: (1) Original: The
ViT-B/16 weights used in the main paper, pre-trained with
supervision on ImageNet-21k [53] following the training
procedure of the original ViT publication [12],8 (2) Ima-
geNet-1k: the same ViT weights further fine-tuned on Ima-
geNet-1k [53],9 and (3) AugReg: weights from a pre-training
with stronger data augmentation in the form of Mixup [67]
and RandAugment [64] following [66].10

In Tab. 12, we summarize our results for Adapter+ with
rank r=8 evaluated on the VTAB validation sets. We notice
that additional fine-tuning on ImageNet-1k gives a slight
edge (83.4% average accuracy over 83.0% for second best) in
adaption for tasks that contain natural images. However, the
fine-tuning is detrimental for the Specialized and Structured
group. Not fine-tuning on ImageNet-1k is beneficial for the
Structured group with a large increase of 3.7 pp. The Aug-
Reg training setting improves the transfer to the Specialized
group but is worse than the other settings for natural images.
Overall, the original supervised training on ImageNet-21k
generalizes best across all tasks in VTAB with an average
accuracy of 76.5%, 0.3 pp better than AugReg training and
1.2 pp better than ImageNet-1k fine-tuning.

8https://storage.googleapis.com/vit_models/imagenet21k/
ViT-B_16.npz

9https://storage.googleapis.com/vit_models/imagenet21k+
imagenet2012/ViT-B_16-224.npz

10https://storage.googleapis.com/vit_models/augreg/B_16-
i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz

https://lightning.ai/pytorch-lightning
https://github.com/huggingface/pytorch-image-models
https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
https://storage.googleapis.com/vit_models/imagenet21k+imagenet2012/ViT-B_16-224.npz
https://storage.googleapis.com/vit_models/imagenet21k+imagenet2012/ViT-B_16-224.npz
https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz
https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz

Table 12. Influence of ViT pre-training. We use Adapter+ with
rank r=8 for the evaluation and report the average accuracy in %
for each subgroup and across all groups on the VTAB val sets.

Pre-training Natural Specialized Structured Average

ImageNet-1k 83.4 86.5 56.0 75.3
AugReg 81.6 87.2 59.7 76.2
Original 83.0 86.8 59.7 76.5

Table 13. Adapter position with DINO backbone. We report
average accuracy in % (± std. dev.) on the VTAB val sets for
different adapter positions. Adapterbase with Houlsby initialization
and rank r=8 is used in all experiments.

Position Natural Specialized Structured Average

Pre 76.8 ± 0.4 86.2 ± 0.6 53.6 ± 0.7 72.2 ± 0.3
Intermediate 76.8 ± 0.4 85.8 ± 0.8 52.6 ± 0.9 71.8 ± 0.4
Parallel 76.7 ± 0.3 86.8 ± 0.4 54.1 ± 0.7 72.5 ± 0.3
Post 76.9 ± 0.2 86.3 ± 0.5 55.3 ± 0.7 72.8 ± 0.3

Table 14. Comparison of Adapter+ with adapter configurations
from previous work with DINO backbone. We report the average
accuracy in % (± std. dev.) of each subgroup and across all groups
on the VTAB val sets.

Configuration # Param Natural Specialized Structured Average

Houlsby [27], r=8 0.39 77.4 ± 0.4 86.5 ± 0.7 52.9 ± 0.8 72.3 ± 0.4
Houlsby [27], r=4 0.24 77.2 ± 0.5 86.2 ± 0.5 53.2 ± 0.8 72.2 ± 0.3
Pfeiffer [47] 0.21 76.8 ± 0.4 86.2 ± 0.3 54.4 ± 1.0 72.5 ± 0.4
AdaptFormer [6] 0.19 76.5 ± 0.4 85.8 ± 0.4 53.0 ± 0.5 71.8 ± 0.3
Adapter+ 0.20 76.7 ± 0.3 86.4 ± 0.5 55.4 ± 0.8 72.8 ± 0.3

F. Generality of the conclusions

Using DINO [5] as an example of a ViT trained with self-
supervision, we show in Tab. 13 that the orders of best-to-
worst adapter position is consistent with that of a supervised
backbone in terms of average accuracy, albeit with a higher
standard deviation. The ranking also stays the same for the
comparison of Adapter+ with adapter configurations from
previous work as presented in Tab. 14. This shows that
our conclusions generalize beyond backbones with super-
vised pre-training to backbones based on self-supervised
pre-training.

References
[64] Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc

Le. RandAugment: Practical automated data augmentation
with a reduced search space. In NeurIPS*2020.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

imperative style, high-performance deep learning library. In
NeurIPS*2019, pages 8024–8035.

[66] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross
Wightman, Jakob Uszkoreit, and Lucas Beyer. How to train
your ViT? Data, augmentation, and regularization in vision
transformers. Trans. Mach. Learn. Res., 2022.

[67] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimization.
In ICLR, 2018.

	. Why did adapters underperform for ViTs?
	. Dataset properties
	. More experimental settings
	. Calculation of no. of trainable parameters
	. Vision transformer pre-training
	. Generality of the conclusions

