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Figure 1. Focus scores in simulation data (including static and dynamic scenes, along with variations in light intensity: (a) continuous
variations and (b) sudden fluctuations.) of the proposed spike-based focus measure, e.g. the spike dispersion (SD), the frame-based
focus measure, e.g. gradient-based and MF-DCT [1], and extension of ER [2] to spike stream. (a) During the focusing process with
continuous changes in light intensity, the dominant influence on the measurement results for methods other than SD is the impact of light
intensity changes, rather than the effect of focusing changes. This poses a challenge for these focus measures to operate effectively in
such scenarios. While SD may also be influenced to some extent, it generally remains within a functional range. (b) In scenes with light
intensity fluctuations, except for SD, other methods are completely unable to function properly. Even minor fluctuations in light intensity
can completely disrupt the original trends of measurement methods with changes in focal position. SD, however, works effectively in this
scenario.



Figure 2. Focus scores in the USAF data (including static and dynamic scenes, along with variations in light intensity: (a) continuous
variations and (b) sudden fluctuations.) of the proposed spike-based focus measure, e.g. the spike dispersion (SD), the frame-based focus
measure, e.g. gradient-based and MF-DCT [1], and extension of ER [2] to spike stream. The arrows with numerical markings indicate
the predicted focusing position, while the ground truth values correspond to the GT values in the top right corner. (a) In scenes with
continuous changes in brightness, similar to the simulation results, except for SD, other methods are affected by the light intensity, with
a more pronounced impact in dynamic scenarios. (b) In a scenario with fluctuations in scene brightness, even subtle fluctuations affect
methods other than SD, leading to abnormal measurements. SD, on the other hand, consistently demonstrates good performance in such
scenarios.



Figure 3. Focus scores in the microscopic data (Cardiac Muscle Section (a)) and macroscopic data (bottle (b)) data of the proposed spike-
based focus measure, e.g. the spike dispersion (SD), the frame-based focus measure, e.g. gradient-based and MF-DCT [1], and extension
of ER [2] to spike stream. The arrows with numerical markings indicate the predicted focusing position, while the ground truth values are
marked by the GT values in the rows above. SD performs well in all scenarios, However, since these focusing processes involve continuous
changes in light intensity, other methods still face challenges in these scenes.



Figure 4. Focus scores in the microscopic data (Cardiac Muscle Section (a)) and macroscopic data (bottle (b)) data of the proposed
spike-based focus measure, e.g. the spike dispersion (SD), the frame-based focus measure, e.g. gradient-based, where w is the size of
the integration window. With a smaller window size, indicating a reduced temporal resolution, gradient-based methods exhibit inferior
measurement performance. As the window size gradually increases, the accumulated information within the window approaches that
of the entire frame image, resulting in an enhancement of the measurement performance for gradient-based methods. However, SD
consistently demonstrates robust measurement performance under any window size. In contrast to gradient-based methods, SD operates
at higher temporal resolutions, making it well-suited for high-speed scenarios. The numbers and arrow markers indicate the predicted
focusing position, while the ground truth values are marked by the GT values in the rows above.



ID Scene Spike frames Focal frame Light microscopic/macroscopic Motion Name

1 USAF 45600 24190 Constant microscopic USAF static constant
2 USAF 45600 19511 Decrease microscopic USAF static decrease
3 USAF 45600 12830 Increase microscopic USAF static increase
4 USAF 45600 14800 Fluctuation minor microscopic USAF static minor
5 USAF 45600 20580 Fluctuation significant microscopic USAF static significant
6 USAF 45600 14000 Constant microscopic ✓ USAF dynamic constant
7 USAF 45600 22510 Decrease microscopic ✓ USAF dynamic decrease
8 USAF 45600 15950 Increase microscopic ✓ USAF dynamic increase
9 USAF 45600 19833 Fluctuation minor microscopic ✓ USAF dynamic minor

10 USAF 45600 21000 Fluctuation significant microscopic ✓ USAF dynamic significant
11 Bottle 80000 27688 Constant macroscopic Bottle static constant
12 Bottle 80000 32258 Constant macroscopic ✓ Bottle dynamic constant
13 Cardiac Muscle Section 30400 13025 Constant microscopic Cardiac static constant
14 Cardiac Muscle Section 30400 11100 Constant microscopic ✓ Cardiac dynamic constant
15 Lily Anther Section 35600 14480 Constant microscopic Lily static constant
16 Lily Anther Section 35600 14000 Constant microscopic ✓ Lily dynamic constant
17 Fan 20000 7949 Constant macroscopic Fan static constant
18 Fan 20000 12288 Constant macroscopic ✓ Fan dynamic constant

Table 1. Details of the spike-based autofocus dataset



Scene Name Mean LPS [3] Kurt [3] HE [3] NCES [3] NCEB [4] Tenegrad [5] VF5 [6] MF DCT [1] SD SGFS

USAF static constant -16640 24160 9880 580 -50 -50 23350 -140 160 -140 -29
USAF static decrease 19181 19481 18791 2981 -679 -679 -25819 -499 1211 161 -146
USAF static increase -32680 12800 -13840 -5350 -70 -70 12800 -1270 -1450 -100 -62
USAF static minor -28490 14770 14080 340 160 160 280 -110 -15290 280 -9

USAF static significant -24360 20550 -22470 -21090 -2040 -2040 -2370 480 -21090 -1920 -149
USAF dynamic constant -22600 13970 -14530 -5230 80 80 80 -490 -130 20 40
USAF dynamic decrease 22360 22480 13270 8170 -20 -20 -23090 -500 730 10 -19
USAF dynamic increase -21010 15920 -11290 -20380 15770 15770 15830 -160 -19960 380 50
USAF dynamic minor -17667 19803 -13437 -11337 273 273 333 243 -11517 243 54

USAF dynamic significant -20520 20970 -21960 -20520 -1170 -1170 -1620 300 -20520 -1620 9251
Bottle static constant 25088 27488 -51312 26088 -512 88 88 -6512 -112 -512 -13

Bottle dynamic constant 31858 32058 -47342 31858 -742 -742 258 -5342 -742 -142 33
Cardiac static constant -15165 13015 -15425 595 595 595 905 595 555 595 78

Cardiac dynamic constant -19040 11090 -19210 -19040 -120 -120 -18340 -120 -18840 -180 -63
Lily static constant -19680 14440 13680 -760 320 320 920 -80 -19680 40 -701

Lily dynamic constant -14920 13960 -19440 -1120 640 640 1640 1760 -14920 -240 3774
Fan static constant 7749 7849 -11651 2649 -51 -51 -51 -51 7549 149 -31

Fan dynamic constant 8388 12188 -7612 1288 488 488 288 188 8388 488 -21

Table 2. Quantitative comparisons in the spike of each sequence with the relative error. A set of frame-based autofocus methods was applied to images reconstructed from spike
using TFP [7] and the results in SGFS were directly derived from the extension of EGS to spike stream. The error is measured in frames, where, for instance, a value of 68 signifies
a discrepancy between the manually pre-determined optimal focus position (focal frame as shown Tab. 1) and the frame predicted by the autofocus search. Due to the high temporal
resolution of the spike frames, e.g. 50 s, the errors within 1000 are practically imperceptible to the human eye. In some scenarios, differences may not even be discernible within
larger error margins, such as in the case of the Cardiac Muscle Section.



1. Appendix
In the appendix, we demonstrate why the power measure is effective in capturing high-frequency information of intensity,
illustrating its capability to reflect the degree of defocus.

1.1. Analysis of Defocusing and Focusing

Lens systems are often simplified as thin lenses, and the imaging model adheres to the following equation:
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where u is the distance between the lens plane to the object plane, v is the distance between the lens plane to the image plane,
and f is the focal length. Typically, when an object point is not in the focal position, it results in a blurred image on the
sensor. This blurred image shares a similar shape with the lens aperture but with a scaling factor. The aperture is commonly
assumed to be circular with a diameter of D, and the circular blurred image formed on the imaging sensor is referred to as a
blur circle. If we denote its diameter as R, the scaling factor is represented as K and can be defined as:
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where s is the distance between the lens plane and the sensor plane, and it can be either greater than v or less than v. The
former implies that the sensor is behind the focal plane, while the latter implies that the sensor is in front of the focal plane.
Combining with Eq. (1), we can obtain:
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Assuming the optical system is lossless, meaning there is no energy loss during the transmission of light, a blurred circle
formed by a unit light source with a diameter of R is commonly referred to as the Point Spread Function (PSF). It can be
represented as:

ha(x, y) =

{
1

πR2 if x2 + y2 ≤ R2

0 otherwise
(4)

where ha(x, y) is the PSF, and the corresponding Optical Transfer Function (OTF) [8] can be expressed as:

Ha(ω, ν;u, s) = 2
J1(R(u, s)ρ(ω, ν))

R(u, s)ρ(ω, ν)
(5)

where ω and ν are the spatial frequencies, J1 is the first order Bessel function, and ρ(ω, ν) =
√
ω2 + ν2 is the radial spatial

frequency.During the process of imaging, it is akin to convolving the focused image f(x, y) with the corresponding PSF. In
the frequency domain, this can be expressed as:

G(ω, ν) = Ha(ω, ν;u, s)F (ω, ν) (6)

From [8], we know that the OTF typically resembles a low-pass filter, influenced by the diameter R of the blur circle, where
a larger R leads to a faster decrease in the main lobe area of the OTF, indicating more loss of high-frequency information.
The increase in R essentially corresponds to an increase in defocus. Therefore, the area of the main lobe in the OTF can
reflect the degree of defocus. The obvious approach is to directly calculate the area of this region as a focus measure, which
is the classical power measure, defined as:

Mp =

∫∫
|G(ω, ν)|2 dωdν (7)

According to the Parseval’s theorem, a more efficient computational approach can be defined as:

Mf =

∫∫
|g(x, y)|2 dxdy (8)



For practical numerical computations, ensuring numerical stability and avoiding issues such as overflow, an equivalent ap-
proach is::
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where µa is the mean of g, A is the area of g and the discrete form is:

Md =
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∑
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(G(x)− µd)
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where G(x) is the pixel value a position x in the image, and N is the number of pixels in the image. Thus far, the degree
of defocus can be reflected through Md. As indicated in Eq. (3), it is evident that the variable R is predominantly influenced
by u and s. In macroscopic imaging, u is typically held constant, and achieving focus involves adjusting s. Conversely, in
microscopic imaging, particularly within a 4f system, s is often fixed, and achieving focus is accomplished by manipulating
u. Despite this distinction, the fundamental adjustment of these parameters boils down to modifying the size of R which is
tantamount to altering the PSF of the system.

1.2. Complexity Analys

The complexity of focus measure SD is O (n ∗m ∗ w), where n is the width of the sensor’s pixels, m is the height of
the sensor’s pixels and w is the length of the integration window. Leveraging parallel optimisation can further reduce this
complexity to O (w). Generally, the autofocus traversal process can be extremely rapid, exemplified by the spike camera
mentioned in [9], which captures 40,000 spike frames in 1s. As indicated in [10], computations under complexity O (w) are
very efficient, reaching a microsecond level when w is less than 1 × 106. This can meet the real-time feedback calculation
requirements in SGFS. Moreover, due to the shortened traversal range, the reduction in the number of iterations in SGFS can
further reduce the time consumption, compared to EGS [10].

1.3. Cases Analysis

In the main text, we presented the results of simulated and real-world data under varying light-intensity conditions. In the
supplementary materials, we further augmented the results with additional scenarios of light intensity variations Figs. 1 and 2,
and additional real-world data Figs. 3 and 4. The quantitative comparisons in spike with the relative error of each sequence are
shown in Tab. 2. All these results consistently demonstrate that SD exhibits stronger robustness to changes in light intensity,
whereas other methods are susceptible to varying degrees of impact. Additionally, We have also found that, due to spike
noise, previous frame-based methods struggle to achieve rapid autofocus in high-speed conditions, resulting in significant
errors.

Additionally, we have observed that in scenarios with lower light intensity, the presence of heightened noise significantly
interferes with other methods. In contrast, SD exhibits a superior ability to withstand the influence of noise, as depicted in
Fig. 3(a).In real-world scenarios, the presence of noise can affect the precision of autofocus.

From Tab. 2, we observe that the SGFS method exhibits a relatively larger error in Lily dynamic constant(3774),
Lily static constant(701), USAF dynamic significant(9251). For USAF dynamic significant, it is primarily be-
cause the SGFS method employs a large accumulation window, which violates the assumption of constant light intensity
when encountering significant fluctuations in light intensity. However, given the inherently robust performance of SD
against light intensity disturbances, it is viable to directly utilize the results from SD for peak searching in this scenario.
For Lily dynamic constant and Lily static constant, the primary reason is the limited structural information available
in the samples, coupled with the slow temporal changes in the focusing process. As a result, even with significant temporal
errors, the actual displacement distance is relatively short, and the results still fall within the depth of field range.
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