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A. Visual SET-SUM Task
We here describe the details of the experiment for the Visual
SET-SUM task. The dataset consists of composite images,
each of which consists of four MNIST images. The com-
posite images are labeled by the sum of all types of digits in
that image as the label (see examples in Fig. 2(a)). The size
of a composite image is 56x56, and the patch size is 28x28.
As we sample the digits (i.e., MNIST images) uniformly,
a composite image has duplicate numbers with a probabil-
ity of roughly 47%. In the test set, each composite image
was designed to have its largest digit in two patches, which
is the most advantageous case of using interactions. We
trained a ResNet-18 [14] model and evaluated it on a test
set of size 10,000. The loss function used for the training
is LMNIST = LCE + LMSE, where the first loss denotes the
cross-entropy loss and the second loss denotes the mean-
squared error between the model prediction and the true
class. The second loss adds a regression flavor and takes a
lower value when the model prediction (i.e., predicted set-
sum) is closer to the label (i.e., the set sum). We filled the
zero value for masking patches for computing Shapley val-
ues and interactions and for the accuracy evaluation.

B. Results of the Insertion/Deletion curve with
additional models

In Sec. 5.1, we evaluated the proposed and baseline methods
using ViT-T [11]. The insertion and deletion curves show
that the proposed method provides the most efficient vi-
sual explanation. To demonstrate this generalization across
different models and architectures, we provide results us-
ing both the DeiT-T [26], a ViT architecture, and ResNet-
18 [14], a widely used CNN model. For details of the ex-
periment in Deit-T, refer to Sec. 5.1. The insertion curve
in Fig. 8(a) again shows that MoXI exhibits a sharper in-
crease compared to the other methods. The deletion curve
in Fig. 8(b) also demonstrates that MoXI exhibits a sharper
decrease compared to the other methods. Similarly, Fig. 9
exhibits that the results for ResNet-18 are similar to these
findings. These results indicate that our method can ef-
ficiently and accurately identify the critical patches in the
model’s decision-making process.

C. Comparison of algorithm complexity and
runtime

In this section, we compare the algorithm complexity and
runtime for each method.

First, we provide an explanation of the complexity of the
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Figure 8. Results for DeiT-T:(a) Insertion curves. (b) Deletion
curves. The curves illustrate the accuracy growth when inserting
(deleting) image patches according to the contributions computed
by each method.
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Figure 9. Results for ResNet-18: (a) Insertion curves. (b) Deletion
curves. The curves illustrate the accuracy growth when inserting
(deleting) image patches according to the contributions computed
by each method.

algorithm, focusing on the number of forward passes re-
quired per image. Let |N | be the number of patches in an
image (typically, |N | = 142). Grad-CAM needs 1 forward
pass (and 1 backward pass), Attention rollout needs 1 for-
ward pass, and Shapley value needs O(|N | · 2|N |) forward
passes. MoXI needs O(|N |2) forward passes in the worst
case. The number of passes for Shapley value and MoXI
is given in Sec. 4, which we will elaborate it again. As de-
fined in Eq. (1), computing the Shapley value for the i-th
pixel requires O(2|N |) passes due to the 2|N |−1 possible
choices of S. leading to O(|N | · 2|N |) passes for an entire
image. On the other hand, MoXI needs O(|N |2) passes.
For example, at the k-th step of the greedy insertion, it re-
cruits a new patch from the remaining |N | − k + 1 patches
to maximize the confidence score (i.e., |N | − k+1 passes).
For |N | steps, it needs O(|N |2) passes in total. Note that
this is the worst-case scenario; the algorithm stops when
the classification becomes correct, and Fig. 3(a) indicates



Table 1. Average runtime 100 ImageNet images [sec] in ViT-T.

Grad-CAM Attention R. Shapley V. MoXI (Ins/Del)
0.15 0.02 17.9 0.60/1.34

that more than 90% of evaluation images require less than
0.04N steps. In the runtime experiment, the median of the
steps was 6 (with std 7.6) and 10 (with std 11.3) for inser-
tion and deletion, respectively. A similar discussion holds
for the deletion case.

Furthermore, our method can leverage parallel process-
ing with mini-batches, leading to a linear number of forward
passes at the cost of additional memory usage. Specifically,
the k-th step of MoXI can be done by a single forward pass
of |N | − k + 1 patterns of the insertion from remaining
patches. Our implementation is based on this paralleliza-
tion.

Next, we compare the runtime required for measuring
the importance in each method. The comparison is based on
the average runtime across 100 images, following the exper-
imental setup described in Sec. 5. For Grad-CAM, Atten-
tion rollout, and Shapley value, the runtime represents the
duration required to compute the importance of the entire
image. In contrast, in the case of MoXI, we separately mea-
sure the runtime for pixel insertion until successful classifi-
cation and for pixel deletion until classification failure. Our
experiments were conducted using a machine equipped with
a 12-core processor, 64GB RAM, and an NVIDIA RTX
3090.

The runtime for each method is shown in Table 1. This
indicates that the runtime for MoXI is approximately 30
times faster than that for Shapley value. Recalling the re-
sults from Fig. 3, MoXI achieves higher accuracy in cap-
turing an important group of patches than Shapley value
method does. Therefore, MoXI surpasses Shapley value in
both accuracy and runtime. While not as fast as Grad-CAM
and Attention rollout, we consider that MoXI meets most
use cases of visualization, and the quality is better, as our
extensive experiments show.

D. Analysis of effective layers to remove
patches

In Sec. 5.1, we consider the absence of players (i.e., pix-
els/patches) for calculating Shapley values and interactions
in the input space. Specifically, the patches are removed af-
ter the input embedding layer. Here, we examine the case
where several self-attention layers are instead masked. To
this end, we utilize a variant of the attention-masking ap-
proach used in [8]. Specifically, let the k-th layer be our
target layer. Then, a large negative value is added to the
product of the query and key matrices from k-th to the last
self-attention layers. Figure 10 displays the insertion curve
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Figure 10. Insertion curves. The curves illustrate the accuracy
growth when inserting image patches according to the contribu-
tions computed by each method. The horizontal axis presents the
insertion rate. The masking method used in the computation of
Shapley values and interactions employs attention masking. For
the insertion curve experiments, masks used for input to the model
for accuracy measurement employ patch deletion.

results when MoXI is applied to various target layers. The
experimental setup is the same as in Sec. 5.1. The result
demonstrates that MoXI prefers the earlier layers and better
pinpoints the important features of images.

E. Additional results of visualization

We provide additional visualization results in Fig. 11
and 12. As in Sec. 5.2, the results demonstrated that the
patches highlighted by MoXI are smaller than those high-
lighted by other methods.

We observed that MoXI behaves slightly unstable at the
insertion case. Recall that in this case, MoXI appends im-
portant patches to an empty set accordingly and terminates
when the model gives the correct classification. Empir-
ically, the termination can happen at a very early stage,
where the confidence score of the correct class is the largest
but still very low. If we continue to patch, the model pre-
diction can fluctuate among several classes. Note this does
not cause a big problem in most cases; all the insertion
curves in this paper consistently show a monotonic increase
of classification accuracy with the increase in insertion rate.
If needed, one can introduce a minimum confidence score
τ ∈ [0, 1] and terminate the insertion when the confidence
score exceeds this threshold with the correct classification.
We include this hyperparameter in our official implementa-
tion of MoXI.
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Figure 11. Visualization of important image patches by each method. The highlighted image patches are selected based on their contri-
butions calculated by each method. (a) Highlighting the patches incrementally added to an entire image until classification success. (b)
Highlighting the patches sequentially removed from a full image until classification failure.

F. Class-descriminative localization

The proposed method was originally designed to identify
important pixels to explain the model prediction. Here, we
generalize MoXI (for pixel deletion) to visualize such pix-
els for a given target class, which is used in Fig. 5. To this
end, we consider reward function switching as follows. Let
x, yt, yf(x) be the input image, the target label, and the pre-
dicted label, respectively. If yt = yf(x), we simply use
a reward function f(x) = log P (yt | x)

1−P (yt | x) . Otherwise, we

use f(x) = log
P (yf(x) | x)

1−Pyf(x) | x)
− P (yt | x)

1−P (yt | x) , which helps us
identify patches with positive effect on the confidence score
on class yf(x) and negative effect on class yt. The image
patches removed in the former case are collected as impor-

tant patches for class yt.

G. Patch perturbations
In Sec. 5.3, we evaluated the effectiveness of each method
by measuring the classification accuracy when Gaussian
and fog noise were applied to important image patches iden-
tified. The deletion curves here are not plotted by removing
patches but instead perturbed. We present experimental re-
sults on common corruptions and adversarial perturbations.

G.1. Common corruptions

We implemented 19 types of common corruptions using
the imagecorruptions module with severity 5.6 Fig-

6 https://github.com/hendrycks/robustness.
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Figure 12. Visualization of important image patches by each method. The highlighted image patches are selected based on their contri-
butions calculated by each method. (a) Highlighting the patches incrementally added to an entire image until classification success. (b)
Highlighting the patches sequentially removed from a full image until classification failure.

ures 13 and 14 showcase the deletion curves with different
corruptions for ViT-T and DeiT-T, respectively. The results
demonstrate that our method gives a sharper decrease at the
early stage of deletion curves than others, as in Sec. 5.3.

G.2. Adversarial perturbations

Besides common corruptions, we also investigated the case
with adversarial perturbations [12, 17, 19], which are small
but malicious perturbations that can largely change the
model’s output. We conducted the same experiment given
in Sec. G.1 but with adversarial perturbations instead of
common corruptions. To obtain adversarial perturbations,
we adopted L2-untargeted PGD with ϵ = 1.0 and stepsize
α = 0.2. Figure 15(a) and 16(a) present the deletion curves
for ViT-T and Deit-T, respectively. The results show that the
attention rollout method gives a slightly sharper decrease
than MoXI. This differs from the results for common cor-
ruptions. We suspect that adversarial perturbations mostly

lie in the patches that are suggested as important by atten-
tion rollout. To confirm this, we measured the magnitude
of adversarial perturbations on each image patch. Specif-
ically, the magnitude is measured by the L2 norm. Fig-
ure 15(b) shows the magnitude of the perturbations of each
patch. The patches are ordered as in the deletion curves in
Fig. 15(a). The results indicate that the importance of im-
age patches identified by attention rollout is well aligned
with the amount of perturbations on them. On the other
hand, image patches identified by MoXI contain a larger
amount of perturbations at the early and late stages than
those at the middle stage. This may be because the atten-
tion rollout reflects the internal computation process of the
features directly when measuring the contributions of im-
age patches, while adversarial perturbations are designed to
hack this process. On the other hand, MoXI treats a Vision
Transformer as a black-box model and is unaware of the
internal process.
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Figure 13. Deletion curves by image corruptions instead of masking with ViT-T. The curves illustrate the change in accuracy along with
the increase in the number of corrupted image patches. The patches are corrupted from the highly contributing ones determined by each
method.

H. More results in the stability of explanations.

In Sec 5.4, we evaluate the stability of explanations of
MoXI and attention rollout with respect to the number of

classes. Here, we consider both insertion and deletion met-
rics, utilizing Grad-CAM, attention rollout, Shapley value,
and MoXI. Figure 17 shows insertion and deletion curves.
The result again shows that MoXI maintains relatively sta-
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Figure 14. Deletion curves by image corruptions instead of masking with DeiT-T. The curves illustrate the change in accuracy along with
the increase in the number of corrupted image patches. The patches are corrupted from the highly contributing ones determined by each
method.

ble accuracy when the model is trained on more classes.
Similarly, other methods have significantly decreased clas-
sification accuracy in such scenarios. Therefore, MoXI
acquires important image patches more consistently than

other methods.
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Figure 15. (a) Deletion curves by adversarial perturbations instead
of masking with ViT-T. The curves illustrate the change in accu-
racy along with the increase in the number of perturbed image
patches. The patches are perturbed from the highly contributing
ones determined by each method. (b) The amount of adversarial
perturbations.
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Figure 16. (a) Deletion curves by adversarial perturbations instead
of masking with DeiT-T. The curves illustrate the change in ac-
curacy along with the increase in the number of perturbed image
patches. The patches are perturbed from the highly contributing
ones determined by each method. (b) The amount of adversarial
perturbations.
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Figure 17. (Top) Insertion curves. (Bottom) Deletion curves. The curves illustrate the change in accuracy along with the increase (decrease)
in the number of unmasked (masked) image patches. Each curve represents the results from the pretrained models with 10, 20, 100, and
1000 classes, respectively. (a) Grad-CAM results, (b) Attention Rollout results, (c) Shapley Value results, (d) MoXI results.


