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Supplementary Material

1. Implementation Details

We implement 3DGStream upon the codebase of 3D Gaus-
sian Splatting (3DG-S) [4] and use tiny-cuda-nn [7] to im-
plement Neural Transformation Cache (NTC). All exper-
iments were conducted on an NVIDIA RTX 3090 GPU.
In training of the initial frame, we let the densification of
3DG-S end at iteration 5000. For the scenes in the N3DV
dataset, we use the 3DGs of iteration 15000 as the initial
3DGs, while for the scenes in the Meet Room dataset, we
use the results of iteration 10000. For convenience, we set
the maximum degree of spherical harmonics (SH) to 1, and
all other hyperparameters are consistent with the 3DG-S.

Training NTC. We set the learning rate of NTC to 0.002.
For the scenes in the N3DV dataset [6], the hash table size
of the multi-resolution hash encoding is 215, the feature vec-
tor dimension is 4, and there are 16 resolution levels. For
the Meet Room dataset [5], the hash table length is 214,
with all other hyperparameters matching those specified for
the N3DV dataset. For all scenes, our fully-fused MLP
comprises 2 hidden layers with 64 neurons each, employ-
ing ReLu as the activation function. Given that the N3DV
dataset and the Meet Room dataset both record indoor dy-
namic scenes, and multi-resolution hash encoding requires
normalized coordinates for input, we create an axis-aligned
bounding box that roughly encloses the house to normalize
the 3D points and discard any points outside the bounding
box to prevent distant landscapes from influencing the train-
ing.

Training the additional 3DGs. Compared to training on
the initial frame, we increase the learning rate in the sec-
ond stage for faster convergence. Specifically, the learn-
ing rates for the mean, SH coefficient, opacity value, scal-
ing vector, and rotation quaternion of the 3DGs are set to
0.0024, 0.0375, 0.75, 0.075, and 0.015, respectively. Note
that these learning rates were not individually fine-tuned;
instead, their proportions are following the default settings
of 3DG-S.

2. SH Rotation

In order to preserve theoretical soundness, we also rotate
the SH after transforming the 3DGs. The zeroth-degree SH
does not require rotation; therefore, we only need to rotate
the first-degree SH coefficients.

We utilize the projection function [10] to project normal
vectors onto the first-order SH. Given a rotation matrix R,
we seek a matrix M that can rotate the first-degree SH. Be-

Method Coffee Cook Cut Flame Flame Sear MeanMartini Spinach Beef Salmon Steak Steak

Plenoxels [3]† 27.65 31.73 32.01 28.68 32.24 32.33 30.77
I-NGP [8]† 25.19 29.84 30.73 25.51 30.04 30.40 28.62
3DG-S [4]† 27.78 34.10 34.03 28.66 34.41 33.48 32.08

DyNeRF [6] – – – 29.58 – – 29.58
NeRFPlayer [11] 31.53 30.58 29.35 31.65 31.93 29.13 30.69
HexPlane [2] – 32.04 32.55 29.47 32.08 32.39 31.70
K-Planes [9] 29.99 32.60 31.82 30.44 32.38 32.52 31.63
HyperReel [1] 28.37 32.30 32.92 28.26 32.20 32.57 31.10
MixVoxels [12] 29.36 31.61 31.30 29.92 31.43 31.21 30.80

StreamRF [5]† 27.84 31.59 31.81 28.26 32.24 32.36 28.26
Ours 27.75 33.31 33.21 28.42 34.30 33.01 31.67

Table 1. Quantitative comparison of PSNR values across all
scenes in the N3DV dataset, with the metric for each scene cal-
culated as the average over 300 frames. †Obtained in our own
experiments with the official codes.

Method Coffee Cook Cut Flame Flame Sear MeanMartini Spinach Beef Salmon Steak Steak

Baseline 27.68 33.19 33.10 28.39 33.54 32.79 31.45
Full Model 27.75 33.31 33.21 28.42 34.30 33.01 31.67

Table 2. Ablation Study of the Adaptive 3DG Addition strategy
across all scenes in the N3DV dataset, with the metric for each
scene calculated as the average over 300 frames. We take PSNR
to measure the image quality.

cause rotating a vector before projecting it to SH produces
the same outcome as projecting the vector first and then ro-
tating the SH, we have the following relationship:

MP (N) = P (RN), (1)

where N is a normal vector. For any three normal vectors
N0, N1, and N2 we denote A = [P (N0), P (N1), P (N2)].
Consequently, we obtain:

MA = [P (RN0), P (RN1), P (RN2)]. (2)

And hence:

M = [P (RN0), P (RN1), P (RN2)]A
−1 (3)

For computational convenience, we choose N0 =
[1, 0, 0]T , N1 = [0, 1, 0]T , and N2 = [0, 0, 1]T .

3. More Results
3.1. Quantitative Results

We provide a quantitative comparison of image quality,
measured by PSNR, across all scenes in the N3DV dataset



Step Overhead (ms) FPS

Render w/o NTC 1.75 571
+ Query NTC +0.46
+ Transformation +0.02
+ SH Rotation +1.24

Total 3.47 288

Table 3. Rendering profilling on the Meet Room dataset.

Dataset NTC (KB) New 3DGs (KB) Total (KB)

N3DV 7781.5 49.1 7830.6
MeetRoom 3941.5 195.3 4136.8

Table 4. Detailed “Storage” entry of our method in Tabs. 1 and
2.

1 50 100 150 200 250 299
Frame Index

200

300

400

500

600

700

800

900

N
um

be
r o

f A
dd

iti
on

al
 3

D
G

s

20.93

31.08

41.24

51.40

61.55

71.71

81.86

92.02
St

or
ag

e 
(K

B)

Figure 1. Number of additional 3DGs and corresponding stor-
age requirement of each frame on the flame salmon scene.

in Tab. 1. Furthermore, we provide the quantitative result
of the ablation study across all scenes in the N3DV dataset
in Tab. 2, Additionally, we provide rendering profilling on
the Meet Room Dataset in Tab. 3.

3.2. Qualitative Results

We provide videos to show the free view synthesis results
on various scenes from the N3DV dataset in https://
sjojok.github.io/3dgstream.

4. More Evaluations

4.1. Storage Requirements

Except the initial 3DGs, we only need to store per-frame
NTCs and per-frame additional 3DGs for each FFV frame,
as detailed in Tab. 4.

4.2. Quantity of 3DGs

In our experiments on the N3DV datasets, the quantity of
initial 3DGs (i.e., the transformed ones) is on the order of
105, while the quantity of frame-specific additional 3DGs
is on the order of 102. We show how the number of the

Scene Stage 1 Stage 2

150 250 100 200

Flame Salmon 28.39 28.44 28.46 28.46
Flame Steak 33.54 33.81 34.44 34.46
Sear Steak 32.79 33.02 33.18 33.19
Cook Spinach 33.19 33.50 33.56 33.57
Cut Roasted Beef 33.10 33.39 33.44 33.44
Coffee Martini 27.68 27.77 27.83 27.83

Table 5. Evaluation on the impact of training iterations con-
ducted on the N3DV dataset. The result of Stage 2 is is obtained
after 250 iterations of optimization at Stage 1. We take PSNR to
measure the image quality.

frame-specific additional 3DGs changes as the frame num-
ber increases in Fig. 1.

4.3. Impact of Training Iterations

In the main text, we discuss the trade-off between train-
ing efficiency and reconstruction quality, noting that lim-
iting the number of training iterations enables efficient on-
the-fly training at the expense of reduced quality. To show
this trade-off, we conduct experiments to evaluate the im-
pact of training iterations, and show the quantitative results
in Tab. 5. As shown in Tab. 5, increasing training itera-
tions in Stage 1 significantly enhances the reconstruction
quality. However, an additional 100 iterations result in an
increment of 3 seconds in the per-frame training duration.
Incrementing training iterations in the second stage has a
minimal impact on quality, which can be attributed to the
higher learning rate employed in this phase and the smaller
number of additional 3DGs, facilitating rapid convergence.
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